CVE-2019-2025
复现环境: Android 8.0 Linux kernel:Linux localhost 4.4.124+ #1 SMP
前提知识
binder是c/s结构 有services client 线程池 还有传输的数据
讲解binder相关的数据结构里面的主要成员,binder的相关函数以及binder的内核缓存区管理
相关数据结构
struct binder_proc {
//每个进程调用open()打开binder驱动都会创建该结构体,用于管理IPC所需的各种信息
struct hlist_node proc_node;
struct rb_root threads;
struct rb_root nodes;
struct rb_root refs_by_desc;
struct rb_root refs_by_node;
struct list_head waiting_threads;
int pid;
struct struct task_struct *tsk;
struct hlist_node deferred_work_node;
int deferred_work;
bool is_dead;
struct list_head todo;
struct binder_stats stats;
struct list_head delivered_death;
int max_threads;
int requested_threads;
int requested_threads_started;
int tmp_ref;
struct binder_priority default_priority;
struct dentry *debugfs_entry;
struct binder_alloc alloc;
struct binder_context *context;
spinlock_t inner_lock;
spinlock_t outer_lock;
};
. threads : binder_thread红黑树的根节点 用于管理binder线程池的红黑树
. nodes : binder_node红黑树的根节点 用于管理binder实体对象(services组件)的红黑树
. refs_by_desc,refs_by_node: 都是binder_ref(client组件)红黑树的根节点,主要是key不同, 用于管理binder引用对象(client组件)的红黑树
. alloc : binder proc的地址空间(!!!),这个结构体极为重要,是漏洞实现的关键
struct binder_alloc {
struct mutex mutex;
struct vm_area_struct *vma;
struct mm_struct *vma_vm_mm;
void *buffer;
ptrdiff_t user_buffer_offset;
struct list_head buffers;
struct rb_root free_buffers;
struct rb_root allocated_buffers;
size_t free_async_space;
struct binder_lru_page *pages;
size_t buffer_size;
uint32_t buffer_free;
int pid;
size_t pages_high;
};
. buffer : 指向一块大的内核缓存区,Binder驱动程序为了方便它进行管理,会将它划分成若干个小块,这些小块的内核缓冲区使用结构体binder_buffer来描述
. buffers:list_head是一个双向链表 ,buffers是双向链表的头部 用来管理buffer里面的binder_buffer ,将 binder_buffer保存在这个列表中,按照地址值从小到大的顺序来排列
. buffer_size : 内核缓存区的大小
. buffer_free: 空闲内核缓存区的大小
. vma : 内核缓存区有两个地址,一个是内核空间地址,另一个是用户空间地址,内核地址是成员buffer,用户地址保存在vma
. user_buffer_offset : 内核缓存区两个地址的差值,也就是内核空间地址和用户空间地址的差值,是个固定的值
. pages : 内核缓存区的物理地址
. free_buffers : 保存空闲的,还没被分配物理页面的小块内核缓存区的红黑树
. allocated_buffers : 保存正在使用的,即已经分配物理页面的小块内核缓存区的红黑树
struct binder_buffer {
struct list_head entry; /* free and allocated entries by address */
struct rb_node rb_node; /* free entry by size or allocated entry */
/* by address */
unsigned free:1;
unsigned allow_user_free:1;
unsigned async_transaction:1;
unsigned free_in_progress:1;
unsigned debug_id:28;
struct binder_transaction *transaction;
struct binder_node *target_node;
size_t data_size;
size_t offsets_size;
size_t extra_buffers_size;
void *data;
};
位置用来描述一个内核内核缓存区,用来在进程间传输数据的
. entry : 作为在binder_alloc中free_buffers和allocated_buffers的节点
. free : 表示该内核缓存区是空闲的。
. allow_user_free : 如果为1,那么service组件会请求Binder驱动程序施放该内核缓存区
. transaction : 表示一个内核缓存区交的是哪一个事务
. target_node : 哪一个Binder实体对象使用
. data : 指向一块大小可变的数据缓存区,用来保存通信数据的,里面保存的数据分为两种类型,其中一种是普通数据,另一种是Binder对象,在数据的后面还跟着一个偏移数组,用来记录数据缓存区中每一个Binder对象在数据缓存区中的位置
. data_size : 前面数据缓存区的大小
. offsets_size : 后面偏移数组的大小
binder的相关函数
binder_open
static int binder_open(struct inode *nodp, struct file *filp)
{
struct binder_proc *proc;
struct binder_device *binder_dev;
binder_debug(BINDER_DEBUG_OPEN_CLOSE, "binder_open: %d:%d\n",
current->group_leader->pid, current->pid);
proc = kzalloc(sizeof(*proc), GFP_KERNEL); //为binder_proc结构体在分配kernel内存空间
if (proc == NULL)
return -ENOMEM;
spin_lock_init(&proc->inner_lock);
spin_lock_init(&proc->outer_lock);
get_task_struct(current->group_leader);
proc->tsk = current->group_leader; //将当前线程的task保存到binder进程的tsk
INIT_LIST_HEAD(&proc->todo);//初始化todo列表
if (binder_supported_policy(current->policy)) {
//将当前进程的nice值转换为进程优先级
proc->default_priority.sched_policy = current->policy;
proc->default_priority.prio = current->normal_prio;
} else {
proc->default_priority.sched_policy = SCHED_NORMAL;
proc->default_priority.prio = NICE_TO_PRIO(0);
}
binder_dev = container_of(filp->private_data, struct binder_device,
miscdev);
proc->context = &binder_dev->context;
binder_alloc_init(&proc->alloc); //初始化binder_alloc
binder_stats_created(BINDER_STAT_PROC);//BINDER_PROC对象创建数加1
proc->pid = current->group_leader->pid;//初始化pid
INIT_LIST_HEAD(&proc->delivered_death);//初始化已分发的死亡通知列表
INIT_LIST_HEAD(&proc->waiting_threads);
filp->private_data = proc;//file文件指针的private_data变量指向binder_proc数据
mutex_lock(&binder_procs_lock);
hlist_add_head(&proc->proc_node, &binder_procs);//将proc_node节点添加到binder_procs为表头的队列
mutex_unlock(&binder_procs_lock);
if (binder_debugfs_dir_entry_proc) {
char strbuf[11];
snprintf(strbuf, sizeof(strbuf), "%u", proc->pid);
/*
* proc debug entries are shared between contexts, so
* this will fail if the process tries to open the driver
* again with a different context. The priting code will
* anyway print all contexts that a given PID has, so this
* is not a problem.
*/
proc->debugfs_entry = debugfs_create_file(strbuf, S_IRUGO,
binder_debugfs_dir_entry_proc,
(void *)(unsigned long)proc->pid,
&binder_proc_fops);
}
return 0;
}
创建binder_proc对象,并把当前进程等信息保存到binder_proc对象,然后初始化,该对象管理IPC所需的各种信息并拥有其他结构体的根结构体;再把binder_proc对象保存到文件指针filp,以及把binder_proc加入到全局链表binder_procs
。
binder_update_page_range
static int binder_update_page_range(struct binder_alloc *alloc, int allocate,
void *start, void *end)
{
void *page_addr;
unsigned long user_page_addr;
struct binder_lru_page *page;
struct vm_area_struct *vma = NULL;
struct mm_struct *mm = NULL;
bool need_mm = false;
if (end <= start)//开头 > 结尾 返回
return 0;
trace_binder_update_page_range(alloc, allocate, start, end);
if (allocate == 0)//此处allocate为1,代表分配过程。如果为0则代表释放过程
goto free_range;
for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
page = &alloc->pages[(page_addr - alloc->buffer) / PAGE_SIZE]; //分配一个page的物理内存
if (!page->page_ptr) {
need_mm = true;
break;
}
}
[...]
page->page_ptr = alloc_page(GFP_KERNEL |
__GFP_HIGHMEM |
__GFP_ZERO);
if (!page->page_ptr) {
pr_err("%d: binder_alloc_buf failed for page at %pK\n",
alloc->pid, page_addr);
goto err_alloc_page_failed;
}
page->alloc = alloc;
INIT_LIST_HEAD(&page->lru);
ret = map_kernel_range_noflush((unsigned long)page_addr,
PAGE_SIZE, PAGE_KERNEL,
&page->page_ptr);//物理空间映射到虚拟内核空间
flush_cache_vmap((unsigned long)page_addr,
(unsigned long)page_addr + PAGE_SIZE);
if (ret != 1) {
pr_err("%d: binder_alloc_buf failed to map page at %pK in kernel\n",
alloc->pid, page_addr);
goto err_map_kernel_failed;
}
user_page_addr =
(uintptr_t)page_addr + alloc->user_buffer_offset;//虚拟用户空间
ret = vm_insert_page(vma, user_page_addr, page[0].page_ptr);//物理空间映射到虚拟进程空间
if (ret) {
pr_err("%d: binder_alloc_buf failed to map page at %lx in userspace\n",
alloc->pid, user_page_addr);
goto err_vm_insert_page_failed;
}
if (index + 1 > alloc->pages_high)
alloc->pages_high = index + 1;
trace_binder_alloc_page_end(alloc, index);
/* vm_insert_page does not seem to increment the refcount */
}
if (mm) {
up_write(&mm->mmap_sem);
mmput(mm);
}
return 0;
free_range://释放内存,物理地址和内核虚拟地址,用户虚拟地址解除映射的过程
[...]
}
工作如下:
binder_update_page_range
主要完成工作:分配物理空间,将物理空间映射到内核空间,将物理空间映射到进程空间. 另外,不同参数下该方法也可以释放物理页面。
binder_ioctl
binder_ioctl()函数负责在两个进程间收发IPC数据和IPC reply数据。
ioctl(文件描述符,ioctl命令,数据类型)
(1) 文件描述符,是通过open()方法打开Binder Driver后返回值;
(2) ioctl命令和数据类型是一体的,不同的命令对应不同的数据类型
ioctl命令 | 数据类型 | 操作 |
---|---|---|
BINDER_WRITE_READ | struct binder_write_read | 收发Binder IPC数据 |
BINDER_SET_MAX_THREADS | __u32 | 设置Binder线程最大个数 |
BINDER_SET_CONTEXT_MGR | __s32 | 设置Service Manager节点 |
BINDER_THREAD_EXIT | __s32 | 释放Binder线程 |
BINDER_VERSION | struct binder_version | 获取Binder版本信息 |
BINDER_SET_IDLE_TIMEOUT | __s64 | 没有使用 |
BINDER_SET_IDLE_PRIORITY | __s32 | 没有使用 |
这些命令中**BINDER_WRITE_READ
**命令是漏洞的核心
static long binder_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
int ret;
struct binder_proc *proc = filp->private_data;
struct binder_thread *thread;
unsigned int size = _IOC_SIZE(cmd);
void __user *ubuf = (void __user *)arg;
/*pr_info("binder_ioctl: %d:%d %x %lx\n",
proc->pid, current->pid, cmd, arg);*/
binder_selftest_alloc(&proc->alloc);
trace_binder_ioctl(cmd, arg);
ret = wait_event_interruptible(binder_user_error_wait, binder_stop_on_user_error < 2);
if (ret)
goto err_unlocked;
thread = binder_get_thread(proc);
if (thread == NULL) {
ret = -ENOMEM;
goto err;
}
switch (cmd) {
case BINDER_WRITE_READ://进行binder的读写操作
ret = binder_ioctl_write_read(filp, cmd, arg, thread);
if (ret)
goto err;
break;
case BINDER_SET_MAX_THREADS: {
设置binder最大支持的线程数
int max_threads;
if (copy_from_user(&max_threads, ubuf,
sizeof(max_threads))) {
ret = -EINVAL;
goto err;
}
binder_inner_proc_lock(proc);
proc->max_threads = max_threads;
binder_inner_proc_unlock(proc);
break;
}
case BINDER_SET_CONTEXT_MGR: //成为binder的上下文管理者,也就是ServiceManager成为守护进程
ret = binder_ioctl_set_ctx_mgr(filp);
if (ret)
goto err;
break;
case BINDER_THREAD_EXIT: //当binder线程退出,释放binder线程
binder_debug(BINDER_DEBUG_THREADS, "%d:%d exit\n",
proc->pid, thread->pid);
binder_thread_release(proc, thread);
thread = NULL;
break;
case BINDER_VERSION: {
//获取binder的版本号
struct binder_version __user *ver = ubuf;
if (size != sizeof(struct binder_version)) {
ret = -EINVAL;
goto err;
}
[...]
err_unlocked:
trace_binder_ioctl_done(ret);
return ret;
}
binder_ioctl_write_read
对于ioctl()方法中,传递进来的命令是cmd = BINDER_WRITE_READ
时执行该方法,arg是一个binder_write_read
结构体
static int binder_ioctl_write_read(struct file *filp,
unsigned int cmd, unsigned long arg,
struct binder_thread *thread)
{
int ret = 0;
struct binder_proc *proc = filp->private_data;
unsigned int size = _IOC_SIZE(cmd);
void __user *ubuf = (void __user *)arg;
struct binder_write_read bwr;
if (size != sizeof(struct binder_write_read)) {
ret = -EINVAL;
goto out;
}
if (copy_from_user(&bwr, ubuf, sizeof(bwr))) {
//把用户空间数据ubuf拷贝到bwr
ret = -EFAULT;
goto out;
}
binder_debug(BINDER_DEBUG_READ_WRITE,
"%d:%d write %lld at %016llx, read %lld at %016llx\n",
proc->pid, thread->pid,
(u64)bwr.write_size, (u64)bwr.write_buffer,
(u64)bwr.read_size, (u64)bwr.read_buffer);
if (bwr.write_size > 0) {
//当写缓存中有数据,则执行binder写操作
ret = binder_thread_write(proc, thread,
bwr.write_buffer,
bwr.write_size,
&bwr.write_consumed);
trace_binder_write_done(ret);
if (ret < 0) {
//当写失败,再将bwr数据写回用户空间,并返回
bwr.read_consumed = 0;
if (copy_to_user(ubuf, &bwr, sizeof(bwr)))
ret = -EFAULT;
goto out;
}
}
if (bwr.read_size > 0) {
//当读缓存中有数据,则执行binder读操作
ret = binder_thread_read(proc, thread, bwr.read_buffer,
bwr.read_size,
&bwr.read_consumed,
filp->f_flags & O_NONBLOCK);
trace_binder_read_done(ret);
binder_inner_proc_lock(proc);
if (!binder_worklist_empty_ilocked(&proc->todo))
binder_wakeup_proc_ilocked(proc); //唤醒等待状态的线程
binder_inner_proc_unlock(proc);
if (ret < 0) {
if (copy_to_user(ubuf, &bwr, sizeof(bwr))) //当读失败,再将bwr数据写回用户空间,并返回
ret = -EFAULT;
goto out;
}
}
binder_debug(BINDER_DEBUG_READ_WRITE,
"%d:%d wrote %lld of %lld, read return %lld of %lld\n",
proc->pid, thread->pid,
(u6