java AQS

1.什么是AQS?

aqs指的是juc下面的AbstractQueuedSynchronizer,是线程同步的一种方式,保证线程安全。
AQS定义两种资源共享方式:Exclusive(独占,只有一个线程能执行,如ReentrantLock)和Share(共享,多个线程可同时执行,如Semaphore/CountDownLatch)。

Aqs之retrentLock

            lock.lock();

            System.out.println("hello");

            lock.unlock();

java.util.concurrent.locks.ReentrantLock#lock

   public void lock() {
        sync.lock();
    }

先来看以看这个sync是什么来头
在这里插入图片描述

顶层接口AbstractOwnableSynchronizer
看下注释

/**
 * A synchronizer that may be exclusively owned by a thread.  This
 * class provides a basis for creating locks and related synchronizers
 * that may entail a notion of ownership.  The
 * {@code AbstractOwnableSynchronizer} class itself does not manage or
 * use this information. However, subclasses and tools may use
 * appropriately maintained values to help control and monitor access
 * and provide diagnostics.
 *
 * @since 1.6
 * @author Doug Lea
 */

大概意思就是说这是一个互斥锁的接口,那么Sync也肯定是互斥锁接口。
Sync下面又有两个是实现,分别是公平互斥锁FairSync和非公平互斥NonfairSync
RetrentLock默认是非公平锁,因此这里的Sync实例为NonfairSync。

继续看java.util.concurrent.locks.ReentrantLock.NonfairSync#lock

  final void lock() {
            if (compareAndSetState(0, 1))
                setExclusiveOwnerThread(Thread.currentThread());
            else
                acquire(1);
        }

java.util.concurrent.locks.AbstractQueuedSynchronizer#compareAndSetState

protected final boolean compareAndSetState(int expect, int update) {
        // See below for intrinsics setup to support this
        return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
  }

很明显这是使用了cas修改,看注释

/**
     * Atomically sets synchronization state to the given updated
     * value if the current state value equals the expected value.
     * This operation has memory semantics of a {@code volatile} read
     * and write.
     *
     * @param expect the expected value
     * @param update the new value
     * @return {@code true} if successful. False return indicates that the actual
     *         value was not equal to the expected value.
     */

原子的修改 同步状态state,如果state的值等于入参expected,则修改为update,返回成功,如果不等于,则返回false

如果compareAndSetState(0, 1)修改状态成功进入java.util.concurrent.locks.AbstractOwnableSynchronizer#setExclusiveOwnerThread
设置独占线程为当前线程

    /**
     * Sets the thread that currently owns exclusive access.
     * A {@code null} argument indicates that no thread owns access.
     * This method does not otherwise impose any synchronization or
     * {@code volatile} field accesses.
     * @param thread the owner thread
     */
    protected final void setExclusiveOwnerThread(Thread thread) {
        exclusiveOwnerThread = thread;
    }

compareAndSetState(0, 1)失败。
进入acquire方法

 /**
     * Acquires in exclusive mode, ignoring interrupts.  Implemented
     * by invoking at least once {@link #tryAcquire},
     * returning on success.  Otherwise the thread is queued, possibly
     * repeatedly blocking and unblocking, invoking {@link
     * #tryAcquire} until success.  This method can be used
     * to implement method {@link Lock#lock}.
     *
     * @param arg the acquire argument.  This value is conveyed to
     *        {@link #tryAcquire} but is otherwise uninterpreted and
     *        can represent anything you like.
     */
    public final void acquire(int arg) {
        if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }

非公平的tryAcquire

/**
         * Performs non-fair tryLock.  tryAcquire is implemented in
         * subclasses, but both need nonfair try for trylock method.
         */
        final boolean nonfairTryAcquire(int acquires) {
            final Thread current = Thread.currentThread();
            int c = getState();
            if (c == 0) {
                if (compareAndSetState(0, acquires)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            else if (current == getExclusiveOwnerThread()) {
                int nextc = c + acquires;
                if (nextc < 0) // overflow
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;
        }

nonfairTryAcquire实际上就是再一次尝试获取锁
如果state为0,直接修改sate获取锁,返回成功。线程不会阻塞, 继续执行
如果当前线程就是独占线程,state+acquire,更新重入锁状态,返回成功

  /**
     * Creates and enqueues node for current thread and given mode.
     *
     * @param mode Node.EXCLUSIVE for exclusive, Node.SHARED for shared
     * @return the new node
     */
    private Node addWaiter(Node mode) {
        Node node = new Node(Thread.currentThread(), mode);
        // Try the fast path of enq; backup to full enq on failure
        Node pred = tail;
        if (pred != null) {
            node.prev = pred;
            if (compareAndSetTail(pred, node)) {
                pred.next = node;
                return node;
            }
        }
        enq(node);
        return node;
    }

这里就能看出来AbstractQueuedSynchronizer(AQS)的队列了。
创建独占类型Node节点
判断队尾是否为空,如果不为空,cas将新节点设置在队尾,并将原队尾指向新节点
如果队列本身就为空, 进入enq

 /**
     * Inserts node into queue, initializing if necessary. See picture above.
     * @param node the node to insert
     * @return node's predecessor
     */
    private Node enq(final Node node) {
        for (;;) {
            Node t = tail;
            if (t == null) { // Must initialize
                if (compareAndSetHead(new Node()))
                    tail = head;
            } else {
                node.prev = t;
                if (compareAndSetTail(t, node)) {
                    t.next = node;
                    return t;
                }
            }
        }
    }

如果队列为空,初始化创建空的头节点
如果不为空,设置尾节点为新node
这里是兜底操作,在死循环中进行,插入失败则继续尝试

 /**
     * Acquires in exclusive uninterruptible mode for thread already in
     * queue. Used by condition wait methods as well as acquire.
     *
     * @param node the node
     * @param arg the acquire argument
     * @return {@code true} if interrupted while waiting
     */
  final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {//死循环
                final Node p = node.predecessor();//获得该node的前置节点
                /**
                * 如果前置节点是head,表示之前的节点就是正在运行的线程,表示是第一个排队的
(一般讲队列中第一个是正在处理的,可以想象买票的过程,第一个人是正在买票(处理中),第二个才是真正排队的人);
那么再去tryAcquire尝试获取锁,如果获取成功,说明此时前置线程已经运行结束,则将head设置为当前节点返回
                *
                *
                **/
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // help GC,将前置节点移出队列,这样就没有指针指向它,可以被gc回收
                    failed = false;
                    return interrupted;//返回false表示不能被打断,意思是没有被挂起,也就是获得到了锁
                }
                /**shouldParkAfterFailedAcquire将前置node设置为需要被挂起,
                    注意这里的waitStatus是针对当前节点来说的,
                    即是前置node的ws指的是下一个节点的状态**/
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())//挂起线程 park()
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);//如果失败取消尝试获取锁(从上面的代码看只有进入p == head && tryAcquire(arg)这个逻辑是才会触发,这个时候前置节点正好在当前节点入队的时候执行完,当前节点正好获得锁,具体的代码以后分析)
        }
    }
//看到因为是死循环,所以当执行到parkAndCheckInterrupt()时,当前线程被挂起,等到某一天被unpark继续执行,这个时候已经是对头的第二个节点了,那么就会进入if (p == head && tryAcquire(arg))逻辑获取到锁并结束循环

获取新节点的上一个节点,如果上个节点是头节点并且尝试修改state成功,则直接把头节点设置成当前节点
如果不是则挂起,同时检测是线程否中断,这个方法是所有线程阻塞,等待获得锁的地方。头节点是正在执行的线程
​shouldParkAfterFailedAcquire方法
Node有5中状态,分别是:CANCELLED(1),SIGNAL(-1)、CONDITION(-2)、PROPAGATE(-3)、默认状态(0)

CANCELLED: 在同步队列中等待的线程等待超时或被中断,需要从同步队列中取消该Node的结点, 其结点的waitStatus为CANCELLED,即结束状态,进入该状态后的结点将不会再变化

SIGNAL: 只要前置节点释放锁,就会通知标识为SIGNAL状态的后续节点的线程

CONDITION: 和Condition有关系,后续会讲解

PROPAGATE:共享模式下,PROPAGATE状态的线程处于可运行状态

   private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
        int ws = pred.waitStatus;
        //如果前置节点是SIGNAL等待唤醒,那么当前线程进入阻塞
        if (ws == Node.SIGNAL)
            /*
             * This node has already set status asking a release
             * to signal it, so it can safely park.
             */
            return true;
        if (ws > 0) {  //如果前置节点是被取消的状态,跳过取消节点,直到SIGNAL节点或者头节点
            /*
             * Predecessor was cancelled. Skip over predecessors and
             * indicate retry.
             */
            do {
                node.prev = pred = pred.prev;
            } while (pred.waitStatus > 0);
            pred.next = node;
        } else {//小于0的清空,修改前节点为SIGNAL,返回false
            /*
             * waitStatus must be 0 or PROPAGATE.  Indicate that we
             * need a signal, but don't park yet.  Caller will need to
             * retry to make sure it cannot acquire before parking.
             */
            compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
        }
        return false;
    }

这个方法的作用是判断当前线程是否需要阻塞,还是继续循环等待执行,尽量避线程block与runnable之间的切换带来的性能损耗。

再看unlock方法

    /**
     * Releases in exclusive mode.  Implemented by unblocking one or
     * more threads if {@link #tryRelease} returns true.
     * This method can be used to implement method {@link Lock#unlock}.
     *
     * @param arg the release argument.  This value is conveyed to
     *        {@link #tryRelease} but is otherwise uninterpreted and
     *        can represent anything you like.
     * @return the value returned from {@link #tryRelease}
     */
    public final boolean release(int arg) {
        if (tryRelease(arg)) {
            Node h = head;
            if (h != null && h.waitStatus != 0)
                unparkSuccessor(h);
            return true;
        }
        return false;
    }
     protected final boolean tryRelease(int releases) {
            int c = getState() - releases;
            if (Thread.currentThread() != getExclusiveOwnerThread())
                throw new IllegalMonitorStateException();
            boolean free = false;
            if (c == 0) {
                free = true;
                setExclusiveOwnerThread(null);
            }
            setState(c);
            return free;
        }

如果unlock线程不等与当前占据的排他线程,抛出IllegalMonitorStateException异常。如果state 已经为0设置占据线程为空。

当前处理节点就是头节点,在释放state后,唤醒头节点的next节点。

   /**
     * Wakes up node's successor, if one exists.
     *
     * @param node the node
     */
    private void unparkSuccessor(Node node) {
        /*
         * If status is negative (i.e., possibly needing signal) try
         * to clear in anticipation of signalling.  It is OK if this
         * fails or if status is changed by waiting thread.
         */
        int ws = node.waitStatus;
        if (ws < 0) //设置状态为0 
            compareAndSetWaitStatus(node, ws, 0);

        /*
         * Thread to unpark is held in successor, which is normally
         * just the next node.  But if cancelled or apparently null,
         * traverse backwards from tail to find the actual
         * non-cancelled successor.
         */
        Node s = node.next;//寻找头节点之后的状态小于等于0的节点进行唤醒,注意这是是从尾节点开始,直到找到最后一个满足条件的Node,进行唤醒(被唤醒后的节v点会在v)
        if (s == null || s.waitStatus > 0) {
            s = null;
            for (Node t = tail; t != null && t != node; t = t.prev)
                if (t.waitStatus <= 0)
                    s = t;
        }
        if (s != null)
            LockSupport.unpark(s.thread);
    }

​寻找头节点之后的状态小于等于0的节点进行唤醒,注意这是是从尾节点开始,直到找到最后一个满足条件的Node,进行唤醒被唤醒后的节点会在acquireQueued方法中将自身设置成为头节点。

上面说了非公平锁,再看看公平锁,与非公平锁比起来仅仅在尝试获取锁的方法有区别
lock方法不会尝试修改state,直接进入acquire方法

   final void lock() {
            acquire(1);
        }
  protected final boolean tryAcquire(int acquires) {
            final Thread current = Thread.currentThread();
            int c = getState();
            if (c == 0) {
                if (!hasQueuedPredecessors() &&
                    compareAndSetState(0, acquires)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            else if (current == getExclusiveOwnerThread()) {
                int nextc = c + acquires;
                if (nextc < 0)
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;
        }
    }

唯一一处不同是尝试占有锁的前提是队列中无其他节点,如果有,需要在尾节点排队等待。

公平锁和非公平的锁区别为,非公平锁,在尝试获取锁失败之后被放进队列等待,而公平锁,尝试获取锁时必须先放入队尾等待(在队列不为空的情况下)。

CountDownLatch lock
CountDownLatch 不需要支持公平/非公平锁因为锁得释放会唤醒所有线程

/**
     * Acquires in shared mode, aborting if interrupted.  Implemented
     * by first checking interrupt status, then invoking at least once
     * {@link #tryAcquireShared}, returning on success.  Otherwise the
     * thread is queued, possibly repeatedly blocking and unblocking,
     * invoking {@link #tryAcquireShared} until success or the thread
     * is interrupted.
     * @param arg the acquire argument.
     * This value is conveyed to {@link #tryAcquireShared} but is
     * otherwise uninterpreted and can represent anything
     * you like.
     * @throws InterruptedException if the current thread is interrupted
     */
    public final void acquireSharedInterruptibly(int arg)
            throws InterruptedException {
        if (Thread.interrupted())
            throw new InterruptedException();
        if (tryAcquireShared(arg) < 0)
            doAcquireSharedInterruptibly(arg);
    }
  protected int tryAcquireShared(int acquires) {
            return (getState() == 0) ? 1 : -1;
        }

如果state不为0,进队列等待

 /**
     * Acquires in shared interruptible mode.
     * @param arg the acquire argument
     */
    private void doAcquireSharedInterruptibly(int arg)
        throws InterruptedException {
        final Node node = addWaiter(Node.SHARED);
        boolean failed = true;
        try {
            for (;;) {
                final Node p = node.predecessor();
                if (p == head) {
                    int r = tryAcquireShared(arg);
                    if (r >= 0) {
                        setHeadAndPropagate(node, r);
                        p.next = null; // help GC
                        failed = false;
                        return;
                    }
                }
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    throw new InterruptedException();
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

入队新节点,节点类型为SHARED,如果前节点为头节点,并且锁已经释放,当前节点将成为头节点并执行。
这里可以看出来这是个非公平锁,入队之前,也会尝试获取state
countDown方法

 /**
     * Releases in shared mode.  Implemented by unblocking one or more
     * threads if {@link #tryReleaseShared} returns true.
     *
     * @param arg the release argument.  This value is conveyed to
     *        {@link #tryReleaseShared} but is otherwise uninterpreted
     *        and can represent anything you like.
     * @return the value returned from {@link #tryReleaseShared}
     */
    public final boolean releaseShared(int arg) {
        if (tryReleaseShared(arg)) {
            doReleaseShared();
            return true;
        }
        return false;
    }

如果state值被减到0,执行doReleaseShared方法

**
     * Release action for shared mode -- signals successor and ensures
     * propagation. (Note: For exclusive mode, release just amounts
     * to calling unparkSuccessor of head if it needs signal.)
     */
    private void doReleaseShared() {
        /*
         * Ensure that a release propagates, even if there are other
         * in-progress acquires/releases.  This proceeds in the usual
         * way of trying to unparkSuccessor of head if it needs
         * signal. But if it does not, status is set to PROPAGATE to
         * ensure that upon release, propagation continues.
         * Additionally, we must loop in case a new node is added
         * while we are doing this. Also, unlike other uses of
         * unparkSuccessor, we need to know if CAS to reset status
         * fails, if so rechecking.
         */
        for (;;) {
            Node h = head;
            if (h != null && h != tail) {
                int ws = h.waitStatus;
                if (ws == Node.SIGNAL) {
                    if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
                        continue;            // loop to recheck cases
                    unparkSuccessor(h);
                }
                else if (ws == 0 &&
                         !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
                    continue;                // loop on failed CAS
            }
            if (h == head)                   // loop if head changed
                break;
        }
    }

唤醒头节点的下一个节点。,并且如果期间头节点变化,继续循环

doAcquireSharedInterruptibly中的setHeadAndPropagate方法

    /**
     * Sets head of queue, and checks if successor may be waiting
     * in shared mode, if so propagating if either propagate > 0 or
     * PROPAGATE status was set.
     *
     * @param node the node
     * @param propagate the return value from a tryAcquireShared
     */
    private void setHeadAndPropagate(Node node, int propagate) {
        Node h = head; // Record old head for check below
        setHead(node);
        /*
         * Try to signal next queued node if:
         *   Propagation was indicated by caller,
         *     or was recorded (as h.waitStatus either before
         *     or after setHead) by a previous operation
         *     (note: this uses sign-check of waitStatus because
         *      PROPAGATE status may transition to SIGNAL.)
         * and
         *   The next node is waiting in shared mode,
         *     or we don't know, because it appears null
         *
         * The conservatism in both of these checks may cause
         * unnecessary wake-ups, but only when there are multiple
         * racing acquires/releases, so most need signals now or soon
         * anyway.
         */
        if (propagate > 0 || h == null || h.waitStatus < 0 ||
            (h = head) == null || h.waitStatus < 0) {
            Node s = node.next;
            if (s == null || s.isShared())
                doReleaseShared();
        }
    }

设置头节点后,针对共享节点存在后继节点,再唤醒后继节点,这样所有队列中的数据都被唤醒了

再看一个Semphore
释放锁时不是一次释放全部,因此也是支持公平和非公平锁得。
公平锁也是如果等待队列中有节点,那么就不尝试修改state获取锁

    protected int tryAcquireShared(int acquires) {
            for (;;) {
                if (hasQueuedPredecessors())
                    return -1;
                int available = getState();
                int remaining = available - acquires;
                if (remaining < 0 ||
                    compareAndSetState(available, remaining))
                    return remaining;
            }
        }

        final int nonfairTryAcquireShared(int acquires) {
            for (;;) {
                int available = getState();
                int remaining = available - acquires;
                if (remaining < 0 ||
                    compareAndSetState(available, remaining))
                    return remaining;
            }
        }

        protected final boolean tryReleaseShared(int releases) {
            for (;;) {
                int current = getState();
                int next = current + releases;
                if (next < current) // overflow
                    throw new Error("Maximum permit count exceeded");
                if (compareAndSetState(current, next))
                    return true;
            }
        }

Semphore内部类Sync重写了这 两个方法,
对应操作 acquire 如果剩余的state >= 申请的资源,获取锁成功,否则需要入队等待,

对应操作 release tryReleaseShared方法,将释放锁的恢复状态加回来。
其他方法和CountDownLatch一样

AQS之Condition

ConditionObject是AbstractQueuedSynchronizer的内部类,condition必须有AbstractQueuedSynchronizer实例创建。

/**
         * Implements interruptible condition wait.
         * <ol>
         * <li> If current thread is interrupted, throw InterruptedException.
         * <li> Save lock state returned by {@link #getState}.
         * <li> Invoke {@link #release} with saved state as argument,
         *      throwing IllegalMonitorStateException if it fails.
         * <li> Block until signalled or interrupted.
         * <li> Reacquire by invoking specialized version of
         *      {@link #acquire} with saved state as argument.
         * <li> If interrupted while blocked in step 4, throw InterruptedException.
         * </ol>
         */
        public final void await() throws InterruptedException {
            if (Thread.interrupted())
                throw new InterruptedException();
            Node node = addConditionWaiter();
            int savedState = fullyRelease(node);
            int interruptMode = 0;
            while (!isOnSyncQueue(node)) {
                LockSupport.park(this);
                if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                    break;
            }
            if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
                interruptMode = REINTERRUPT;
            if (node.nextWaiter != null) // clean up if cancelled
                unlinkCancelledWaiters();
            if (interruptMode != 0)
                reportInterruptAfterWait(interruptMode);
        }
/**
         * Adds a new waiter to wait queue.
         * @return its new wait node
         */
        private Node addConditionWaiter() {
            Node t = lastWaiter;
            // If lastWaiter is cancelled, clean out.
            if (t != null && t.waitStatus != Node.CONDITION) {
                unlinkCancelledWaiters();
                t = lastWaiter;
            }
            Node node = new Node(Thread.currentThread(), Node.CONDITION);
            if (t == null)
                firstWaiter = node;
            else
                t.nextWaiter = node;
            lastWaiter = node;
            return node;
        }

加入到等待队列

  /**
     * Invokes release with current state value; returns saved state.
     * Cancels node and throws exception on failure.
     * @param node the condition node for this wait
     * @return previous sync state
     */
    final int fullyRelease(Node node) {
        boolean failed = true;
        try {
            int savedState = getState();
            if (release(savedState)) {
                failed = false;
                return savedState;
            } else {
                throw new IllegalMonitorStateException();
            }
        } finally {
            if (failed)
                node.waitStatus = Node.CANCELLED;
        }
    }

内部类可以访问外部实例方法,获取当前lock state值,释放state的值(设置为0)这也说明了
Conditionde awit操作,会释放当前锁,release前面说过,这不再看了

在这里插入图片描述

  1. 构造一个属于ConditionObject新的等待队列节点加入到等待队列队尾
  2. 释放锁,也就是将它的同步队列节点从同步队列队首移除
  3. 自旋,直到它在等待队列上的节点移动到了ConditionObject中的同步队列
  4. 阻塞当前节点,直到该等待节点被signal唤醒,会再次尝试acquireQueued加入到lock的等待队列中,直到它获取到了锁,也就是它在同步队列上的节点排队排到了队首。那么会再次执行。

再看singnal方法

 /**
         * Moves the longest-waiting thread, if one exists, from the
         * wait queue for this condition to the wait queue for the
         * owning lock.
         *
         * @throws IllegalMonitorStateException if {@link #isHeldExclusively}
         *         returns {@code false}
         */
        public final void signal() {
            if (!isHeldExclusively())
                throw new IllegalMonitorStateException();
            Node first = firstWaiter;
            if (first != null)
                doSignal(first);
        }

判断当前线程是否为lock独占线程
从等待队列的队首开始,尝试对队首节点执行唤醒操作;如果节点CANCELLED,就尝试唤醒下一个节点;如果再CANCELLED则继续迭代。

对每个节点执行唤醒操作时,首先将节点加入同步队列,此时await()操作的步骤3的解锁条件就已经开启了。然后分两种情况讨论:

如果先驱节点的状态为CANCELLED(>0) 或设置先驱节点的状态为SIGNAL失败,那么就立即唤醒当前节点对应的线程,此时await()方法就会完成步骤3,进入步骤4。

如果成功把先驱节点的状态设置为了SIGNAL,那么就不立即唤醒了。等到先驱节点成为同步队列首节点并释放了同步状态后,会自动唤醒当前节点对应线程的,这时候await()的步骤3才执行完成,而且有很大概率快速完成步骤

AQS之ReentrantReadWriteLock

ReentrantReadWriteLock 是读写锁,和ReentrantLock会有所不同,对于读多写少的场景使用ReentrantReadWriteLock 性能会比ReentrantLock高出不少。在多线程读时互不影响,不像ReentrantLock即使是多线程读也需要每个线程获取锁。不过任何一个线程在写的时候就和ReentrantLock类似,其他线程无论读还是写都必须获取锁。需要注意的是同一个线程可以拥有 writeLock 与 readLock (但必须先获取 writeLock 再获取 readLock, 反过来进行获取会导致死锁)
也是通过juc实现,但是原理比较不在,不在研究

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值