Wolf and Rabbit

本文介绍了一个有趣的数学问题:一只兔子如何在多个洞中找到安全的藏身之处以躲避狼的搜索。通过分析狼搜索洞穴的规律,文章提供了一种简单有效的方法来判断是否存在安全洞。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

There is a hill with n holes around. The holes are signed from 0 to n-1.



A rabbit must hide in one of the holes. A wolf searches the rabbit in anticlockwise order. The first hole he get into is the one signed with 0. Then he will get into the hole every m holes. For example, m=2 and n=6, the wolf will get into the holes which are signed 0,2,4,0. If the rabbit hides in the hole which signed 1,3 or 5, she will survive. So we call these holes the safe holes.
Input
The input starts with a positive integer P which indicates the number of test cases. Then on the following P lines,each line consists 2 positive integer m and n(0<m,n<2147483648).
Output
For each input m n, if safe holes exist, you should output "YES", else output "NO" in a single line.
Sample Input
2
1 2
2 2

Sample Output

NO

YES

思路: 思考一下,每次到的位置依次是 m%n,2m%n,3m%n,4m%n...km%n  尝试一下可知 当两个数互质的时候,就可以遍历所有的洞

代码

#include<stdio.h>
int gcd(int a,int b) //递归
{
	return b==0?a:gcd(b,a%b);// 
}
unsigned int gcd(unsigned int a,unsigned int b) //  不用递归 即 辗转相除法
{
    int r;
    while(b>0)
    {
         r=a%b;
         a=b;
         b=r;
    }
    return a;
}
int main() { int p; scanf("%d",&p); while(p--) { int n,m; scanf("%d%d",&n,&m); if(gcd(n,m)==1) printf("NO\n"); else printf("YES\n"); } return 0; }


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值