机器人学状态估计 第一讲作业

本文通过数学推导证明了高斯分布的多个关键性质,包括均值、方差的计算公式,以及多个独立高斯变量乘积仍为高斯分布等结论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.证明∫−∞∞12πσ2e−(x−u)22σ2dx=1\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-u)^ 2}{2 \sigma^{2}}} d x=12πσ21e2σ2(xu)2dx=1

证:

x−u2σ=t,t∈(−∞,∞)\frac{x-u}{\sqrt{2} \sigma}=t, t \in(-\infty, \infty)2σxu=t,t(,)

x=2σt+ux=\sqrt{2} \sigma t+ux=2σt+u,有

∫−∞∞12πσ2e−(x−u)22σ2dx=∫−∞∞12πσ2e−t2d(2σt+u)=∫−∞∞1πe−t2dt\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-u)^{2}}{2 \sigma^{2}}} d x=\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-t^{2}} d(\sqrt{2} \sigma t+u)=\int_{-\infty}^{\infty} \frac{1}{\sqrt{\pi}} e^{-t^{2}} d t2πσ21e2σ2(xu)2dx=2πσ21et2d(2σt+u)=π1et2dt

∫−∞∞e−t2dt=π\int_{-\infty}^{\infty} e^{-t^{2}} d t=\sqrt{\pi}et2dt=π可知

∫−∞∞1πe−t2dt=1\int_{-\infty}^{\infty} \frac{1}{\sqrt{\pi}} e^{-t^{2}} d t=1π1et2dt=1

∫−∞∞12πσ2e−(x−μ)22σ2dx=1\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x=12πσ21e2σ2(xμ)2dx=1

2.(第二章第1题)μ,v\pmb \mu, \pmb vμμμ,vvv为维度相同的列向量,证明

u⊤v=tr⁡(vu⊤) \pmb u^{\top} \pmb v=\operatorname{tr}\left(\pmb v \pmb u^{\top}\right) uuuvvv=tr(vvvuuu)

证:

μ=[μ1,⋯ ,μM]T\pmb \mu=[ \mu_1, \cdots, \mu_M]^Tμμμ=[μ1,,μM]T,v=[v1,⋯ ,vM]T\pmb v=[ v_1, \cdots, v_M]^Tvvv=[v1,,vM]T,则
vu⊤=[v1⋮vm][u1⋯⋅um]=[v1u1⋯⋯⋯v1um⋮⋱⋮⋮vkuk⋮⋮⋱⋮vmu1⋯⋯⋯vmum] \pmb v \pmb u^{\top}=\left[\begin{array}{c} v_{1} \\ \vdots \\ v_{m} \end{array}\right]\left[u_{1} \cdots \cdot u_{m}\right]=\left[\begin{array}{cccc} v_{1} u_{1} & \cdots & \cdots&\cdots & v_{1}u_{m} \\ \vdots & \ddots & & &\vdots& \\ \vdots & & v_{k} u_{k}&&\vdots&\\ \vdots & & &\ddots&\vdots \\ v_{m} u_{1} & \cdots &\cdots & \cdots & v_{m}u_m \end{array}\right] vvvuuu=v1vm[u1um]=v1u1vmu1vkukv1umvmum


tr⁡(vu⊤)=∑i=1mviui=u⊤v \operatorname{tr}\left(\pmb v \pmb u^{\top}\right)=\sum_{i=1}^{m} v_{i} u_{i}=\pmb u^{\top} \pmb v tr(vvvuuu)=i=1mviui=uuuvvv

原命题得证

3.(第二章第4题)对于高斯分布随机变量,x∼N(μ,Σ)\pmb x \sim N(\pmb \mu, \pmb \Sigma)xxxN(μμμ,ΣΣΣ),证明

μ=E(x)=∫−∞∞x1(2π)Ndet(Σ)exp⁡(−12(x−u)TΣ−1(x−u))dx\pmb\mu=E(\pmb x)=\int_{-\infty}^{\infty} \pmb x \frac{1}{\sqrt{(2 \pi)^{N } det( \Sigma)}} \exp \left(-\frac{1}{2}(\pmb x-\pmb u)^{T} \Sigma^{-1}(\pmb x-\pmb u)\right) d\pmb xμμμ=E(xxx)=xxx(2π)Ndet(Σ)1exp(21(xxxuuu)TΣ1(xxxuuu))dxxx

证:

因为Σ\SigmaΣ对称半正定且Σ\SigmaΣ可逆

Σ\SigmaΣ正定且可相似对角化,即存在单位正交矩阵Q使得

Σ=Q⊤ΛQ\Sigma=Q^{\top} \Lambda QΣ=QΛQ

其中Λ=[λ1⋱λN]\Lambda=\left[\begin{array}{lll} \lambda_{1} & & \\ & \ddots & \lambda_{N} \end{array}\right]Λ=[λ1λN],λi\lambda_{i}λiΣ\SigmaΣ特征值且λi>0\lambda_{i}>0λi>0

u=E(x)=∫−∞∞x1(2π)Ndet(Σ)exp⁡(−12(x−u)⊤Q⊤ΛQ(x−u))dx\pmb u=E( \pmb x)=\int_{-\infty}^{\infty} \pmb x \frac{1}{\sqrt{(2 \pi )^{N} d e t(\Sigma)}} \exp \left(-\frac{1}{2}(\pmb x- \pmb u)^{\top} Q^{\top} \Lambda Q(\pmb x- \pmb u)\right) d \pmb xuuu=E(xxx)=xxx(2π)Ndet(Σ)1exp(21(xxxuuu)QΛQ(xxxuuu))dxxx

t=Q(x−u)\pmb t=Q(\pmb x- \pmb u)ttt=Q(xxxuuu), 则x=Q−1t+μ\pmb x=Q^{-1} \pmb t+ \pmb \muxxx=Q1ttt+μμμ

因为Q的行列式为1,


u=E(x)=∫−∞∞Q−1t+u(2π)Ndet(Σ)exp⁡(−12t⊤Λt)dt=∫−∞∞Q−1t(2π)Ndet⁡(Σ)exp⁡(−12t⊤Λt)dt+∫−∞∞u(2π)Ndet(Σ)exp⁡(−12t⊤Λt)dt\begin{aligned} u=E(x)&=\int_{-\infty}^{\infty} \frac{Q^{-1} \pmb t+ \pmb u}{\sqrt{(2 \pi)^{N} det(\Sigma)}} \exp \left(-\frac{1}{2} \pmb t^{\top} \Lambda \pmb t\right) d \pmb t \\ &= \int_{-\infty}^{\infty} \frac{Q^{-1} \pmb t}{\sqrt{(2 \pi)^{N} \operatorname{det}(\Sigma)}} \exp \left(-\frac{1}{2} \pmb t^{\top} \Lambda \pmb t\right) d \pmb t+\int_{-\infty}^{\infty} \frac{\pmb u}{\sqrt{(2 \pi)^{N}det(\Sigma)} } \exp \left(-\frac{1}{2} \pmb t^{\top} \Lambda \pmb t\right) d \pmb t\\ \end{aligned}u=E(x)=(2π)Ndet(Σ)Q1ttt+uuuexp(21tttΛttt)dttt=(2π)Ndet(Σ)Q1tttexp(21tttΛttt)dttt+(2π)Ndet(Σ)uuuexp(21tttΛttt)dttt

因第一项中被积项为奇函数,积分后为0


u=E(x)=∫−∞∞u(2π)Ndet(Σ)exp⁡(−12t⊤Λt)dt=∫−∞∞u(2π)Ndet(Σ)exp⁡(−12∑i=1N1λiti2)dt=u(2π)N∏i=NNλi∏i=1N∫−∞∞exp⁡(−12λiti2)dti \begin{aligned} \pmb u=E(\pmb x)&=\int_{-\infty}^{\infty} \frac{\pmb u}{\sqrt{(2 \pi)^{N} d e t(\Sigma)}} \exp \left(-\frac{1}{2} \pmb t^{\top} \Lambda \pmb t\right) d \pmb t\\ &=\int_{-\infty}^{\infty} \frac{\pmb u}{\sqrt{(2 \pi)^{N}det(\Sigma)} } \exp \left(-\frac{1}{2} \sum_{i=1}^{N} \frac{1}{\lambda_{i}} t_{i}^{2}\right) d \pmb t\\ &=\frac{\pmb u}{\sqrt{(2 \pi)^{N}\prod_{i=N}^{N} \lambda_{i}} } \prod_{i=1}^{N} \int_{-\infty}^{\infty} \exp \left(-\frac{1}{2} \lambda_{i} t_{i}^{2}\right) d t_{i} \end{aligned} uuu=E(xxx)=(2π)Ndet(Σ)uuuexp(21tttΛttt)dttt=(2π)Ndet(Σ)uuuexp(21i=1Nλi1ti2)dttt=(2π)Ni=NNλiuuui=1Nexp(21λiti2)dti

zi=12λitiz_i=\frac{1}{\sqrt{2 \lambda_i}}t_izi=2λi1ti,有

μ=μ(2π)N∏i=1Nλi∏i=1N2λi∫−∞∞exp⁡(−zi2)dzi=μ \begin{aligned} \pmb \mu &= \frac{\pmb \mu}{\sqrt{(2 \pi)^{N} \prod_{i=1}^{N} \lambda_{i}} } \prod_{i=1}^{N} \sqrt{2 \lambda_{i}} \int_{-\infty}^{\infty} \exp \left(-z_{i}^{2}\right) d z_{i} \\ &= \pmb \mu \end{aligned} μμμ=(2π)Ni=1Nλiμμμi=1N2λiexp(zi2)dzi=μμμ

原式得证

##E 4.(第二章第5题)对于高斯分布随机变量,x∼N(μ,Σ)\pmb x \sim N(\pmb \mu, \pmb \Sigma)xxxN(μμμ,ΣΣΣ),证明
Σ=E[(x−u)(x−u)⊤]=∫−∞∞(x−u)(x−u)⊤1(2π)Ndet⁡(Σ)exp⁡[−12(x−u)⊤Σ−1(x−u)]dx\Sigma= E\left[(\pmb x- \pmb u)(\pmb x- \pmb u)^{\top}\right]=\int_{-\infty}^{\infty}(\pmb x-\pmb u)(\pmb x-\pmb u)^{\top} \frac{1}{\sqrt{(2 \pi)^{N} \operatorname{det}(\Sigma)}} \exp \left[-\frac{1}{2}(\pmb x-\pmb u)^{\top} \Sigma^{-1}(\pmb x-\pmb u)\right] d \pmb xΣ=E[(xxxuuu)(xxxuuu)]=(xxxuuu)(xxxuuu)(2π)Ndet(Σ)1exp[21(xxxuuu)Σ1(xxxuuu)]dxxx

证:

f(x)=Σ(x−u)(x−u)⊤Σ−1f(\pmb x)=\Sigma(\pmb x-\pmb u)(\pmb x-\pmb u)^{\top} \Sigma^{-1}f(xxx)=Σ(xxxuuu)(xxxuuu)Σ1,先求f(x)f(\pmb x)f(xxx)期望:

E[f(x)]=∫−∞∞f(x)p(x)dx=∫−∞∞∑(x−u)(x−u)TΣ−1(2π)Ndet⁡(Σ)exp⁡(−12(x−u)⊤Σ−1(x−u))dx=∫−∞∞∑yyT∑−1(2π)Ndet(Σ)exp⁡(−12yTΣ−1y)dy=∫−∞∞Σy(2π)Ndet⁡(Σ)(exp⁡(−12y⊤Σ−1y)Σ−1y)⊤dy=∫−∞∞Σy(2π)Ndet⁡(Σ)dexp⁡⊤(−12y⊤Σ−1y)=−Σ∫−∞∞y(2π)Ndet⁡(Σ)dexp⁡(−12y⊤Σ−1y)=−Σ[y(2π)Ndet(Σ)exp⁡(−12y⊤Σ−1y)∣−∞∞−∫−∞∞1(2π)NdetΣexp⁡(−12y⊤Σ−1y)dy]=−Σ[0−I]=Σ \begin{aligned} E[f(\pmb x)] &=\int_{-\infty}^{\infty} f(\pmb x) p(\pmb x) d \pmb x \\ &=\int_{-\infty}^{\infty} \frac{\sum(\pmb x-\pmb u)(\pmb x-\pmb u)^{T} \Sigma^{-1}}{\sqrt{(2 \pi)^{N}\operatorname{det}(\Sigma)} } \exp \left(-\frac{1}{2}(\pmb x-\pmb u)^{\top} \Sigma^{-1}(\pmb x-\pmb u)\right) d \pmb x \\ &=\int_{-\infty}^{\infty} \frac{\sum \pmb y \pmb y^{T} \sum^{-1}}{\sqrt{(2 \pi)^{N}d e t(\Sigma)} } \exp \left(-\frac{1}{2} \pmb y^{T} \Sigma^{-1} \pmb y\right) d \pmb y \\ &=\int_{-\infty}^{\infty} \frac{\Sigma \pmb y}{\sqrt{(2 \pi)^{N} \operatorname{det}(\Sigma)}}\left(\exp \left(-\frac{1}{2} \pmb y^{\top} \Sigma^{-1} \pmb y\right) \Sigma^{-1} \pmb y\right)^{\top} d \pmb y \\ &=\int_{-\infty}^{\infty} \frac{\Sigma \pmb y}{\sqrt{(2 \pi)^{N}\operatorname{det}(\Sigma)} } d \exp ^{\top}\left(-\frac{1}{2} \pmb y^{\top} \Sigma^{-1} \pmb y\right) \\ &=-\Sigma \int_{-\infty}^{\infty} \frac{\pmb y}{\sqrt{(2 \pi)^{N} \operatorname{det}(\Sigma)}} d \exp \left(-\frac{1}{2} \pmb y^{\top} \Sigma^{-1} \pmb y\right) \\ &=-\Sigma\left[\left.\frac{\pmb y}{\sqrt{(2 \pi)^{N} d e t(\Sigma)}} \exp \left(-\frac{1}{2} \pmb y^{\top} \Sigma^{-1} \pmb y\right)\right|_{-\infty} ^{\infty}-\int_{-\infty}^{\infty} \frac{1}{\sqrt{(2 \pi)^{N} d e t{\Sigma}}} \exp \left(-\frac{1}{2} \pmb y^{\top} \Sigma^{-1} \pmb y\right) d\pmb y\right]\\ &=-\Sigma[0-I]\\ &=\Sigma \end{aligned} E[f(xxx)]=f(xxx)p(xxx)dxxx=(2π)Ndet(Σ)(xxxuuu)(xxxuuu)TΣ1exp(21(xxxuuu)Σ1(xxxuuu))dxxx=(2π)Ndet(Σ)yyyyyyT1exp(21yyyTΣ1yyy)dyyy=(2π)Ndet(Σ)Σyyy(exp(21yyyΣ1yyy)Σ1yyy)dyyy=(2π)Ndet(Σ)Σyyydexp(21yyyΣ1yyy)=Σ(2π)Ndet(Σ)yyydexp(21yyyΣ1yyy)=Σ[(2π)Ndet(Σ)yyyexp(21yyyΣ1yyy)(2π)NdetΣ1exp(21yyyΣ1yyy)dyyy]=Σ[0I]=Σ

上面推导过程用到了如下性质:

1.若Σ\SigmaΣ对称正定

dy⊤Σ−1ydy=(Σ−1+Σ−T)y=2Σ−1y\frac{d \pmb y^{\top} \Sigma^{-1} \pmb y}{d \pmb y}=\left(\Sigma^{-1}+\Sigma^{-T}\right) \pmb y=2 \Sigma^{-1} \pmb ydyyydyyyΣ1yyy=(Σ1+ΣT)yyy=2Σ1yyy

2.exp⁡(−12y⊤Σ−1y)\exp \left(-\frac{1}{2} \pmb y^{\top} \Sigma^{-1} \pmb y\right)exp(21yyyΣ1yyy)对称(可从泰勒展开得出)


E[f(x)]=E[Σ(x−u)(x−u)⊤Σ−1]=ΣE[(x−u)(x−u)⊤]Σ−1=Σ \begin{aligned} E[f(\pmb x)] &=E\left[\Sigma(\pmb x-\pmb u)(\pmb x-\pmb u)^{\top} \Sigma^{-1}\right] \\ &=\Sigma E\left[(\pmb x-\pmb u)(\pmb x-\pmb u)^{\top}\right] \Sigma^{-1} \\ &=\Sigma \end{aligned} E[f(xxx)]=E[Σ(xxxuuu)(xxxuuu)Σ1]=ΣE[(xxxuuu)(xxxuuu)]Σ1=Σ

E[(x−u)(x−u)⊤]=ΣE\left[(\pmb x-\pmb u)(\pmb x-\pmb u)^{\top}\right]=\SigmaE[(xxxuuu)(xxxuuu)]=Σ

原命题得证

5.(第二章第6题)对于K个相互独立的高斯变量,xk∼N(μk,Σk)x_k \sim N(\mu_k, \Sigma_k)xkN(μk,Σk),请证明它们的归一化积仍是高斯分布

exp⁡(−12(x−u)⊤Σ−1(x−u))=η∏k=1Kexp⁡(−12(x−uk)⊤Σk−1(x−uk)) \exp \left(-\frac{1}{2}(\pmb x-\pmb u)^{\top} \Sigma^{-1}(\pmb x-\pmb u)\right)=\eta \prod_{k=1}^{K} \exp \left(-\frac{1}{2}\left( \pmb x-\pmb u_{k}\right)^{\top} \Sigma_{k}^{-1}\left( \pmb x- \pmb u_{k}\right)\right) exp(21(xxxuuu)Σ1(xxxuuu))=ηk=1Kexp(21(xxxuuuk)Σk1(xxxuuuk))

其中
Σ−1=∑k=1KΣk−1Σ−1u=∑k=1KΣk−1uk \Sigma^{-1}=\sum_{k=1}^{K} \Sigma_{k}^{-1} \quad \Sigma^{-1} \pmb u=\sum_{k=1}^{K} \Sigma_{k}^{-1} u_{k} Σ1=k=1KΣk1Σ1uuu=k=1KΣk1uk

证明:
η∏k=1Kexp⁡(−12(x−uk)TΣk−1(x−uk))=ηexp⁡[∑k=1K−12(x−uk)⊤Σk−1(x−uk)]=ηexp⁡[−12x⊤∑k=1kΣk−1x−x⊤∑k=1kΣk−1uk−∑k=1kuk⊤Σk−1x+∑k=1kuk⊤Σk−1uk)] \begin{aligned} \eta \prod_{k=1}^{K} \exp \left(-\frac{1}{2}\left(\pmb x- \pmb u_{k }\right)^{T} \Sigma_{k}^{-1}\left(\pmb x-\pmb u_{k}\right)\right) &= \eta \exp \left[\sum_{k=1}^{K}-\frac{1}{2}\left(\pmb x-\pmb u_{k}\right)^{\top} \Sigma_{k}^{-1}\left(\pmb x-\pmb u_{k}\right)\right] \\ &= \eta \exp \left[-\frac{1}{2} \pmb x^{\top} \sum_{k=1}^{k} \Sigma_{k}^{-1} \pmb x-\pmb x^{\top} \sum_{k=1}^{k} \Sigma_{k}^{-1} \pmb u_{k}-\sum_{k=1}^{k} \pmb u_{k}^{\top} \Sigma_{k}^{-1} \pmb x+\sum_{k=1}^{k} \pmb u_{k}^{\top} \Sigma_{k}^{-1} \pmb u_{k}) \right] \\ \end{aligned} ηk=1Kexp(21(xxxuuuk)TΣk1(xxxuuuk))=ηexp[k=1K21(xxxuuuk)Σk1(xxxuuuk)]=ηexp[21xxxk=1kΣk1xxxxxxk=1kΣk1uuukk=1kuuukΣk1xxx+k=1kuuukΣk1uuuk)]

M=(∑k=1KΣk−1Uk)⊤(∑k=1k∑k−1)−1(∑k=1kΣk−1Uk)M=\left(\sum_{k=1}^{K} \Sigma_{k}^{-1} U_{k}\right)^{\top}\left(\sum_{k=1}^{k} \sum_{k}^{-1}\right)^{-1}\left(\sum_{k=1}^{k} \Sigma_{k}^{-1} U_{k}\right)M=(k=1KΣk1Uk)(k=1kk1)1(k=1kΣk1Uk)

η∏k=1Kexp⁡(−12(x−uk)TΣk−1(x−uk))=ηexp⁡[−12(xT∑k=1KΣk−1x−x⊤∑k=1kΣk−1uk−∑k=1kuk⊤Σk−1x+M)+12M+12∑k=1Kuk⊤Σk−1uk]=ηexp⁡[12M+12∑k=1KukTΣk−1uk]exp⁡[−12x⊤∑k=1KΣk=1−1x−xT∑k=1KΣk−1uk−∑k=1TukTΣk−1x+M]=η′exp⁡[−12(x−(∑k=1kΣk−1)−1∑k=1kΣk−1uk)T∑k=1KΣk−1(x−(∑k=1KΣk−1)−1∑k=1kΣk−1uk)]=η′exp⁡[−12(x−u)⊤Σ−1(x−u)](记Σ−1=∑k=1KΣk−1u=Σ−1∑k=1KΣk−1uk) \begin{aligned} \eta \prod_{k=1}^{K} \exp \left(-\frac{1}{2}\left(\pmb x- \pmb u_{k }\right)^{T} \Sigma_{k}^{-1}\left(\pmb x-\pmb u_{k}\right)\right) &= \eta \exp \left[-\frac{1}{2}\left(\pmb x^T \sum_{k=1}^{K} \Sigma_{k}^{-1} \pmb x- \pmb x^{\top} \sum_{k=1}^{k} \Sigma_{k}^{-1} \pmb u_{k}-\sum_{k=1}^{k} \pmb u_{k}^{\top} \Sigma_{k}^{-1} \pmb x+M\right)+\frac{1}{2} M+\frac{1}{2} \sum_{k=1}^{K} \pmb u_{k}^{\top} \Sigma_{k}^{-1} \pmb u_{k}\right] \\ &= \eta \exp \left[\frac{1}{2} M+\frac{1}{2} \sum_{k=1}^{K} \pmb u_{k}^{T} \Sigma_{k}^{-1} \pmb u_{k}\right] \exp \left[-\frac{1}{2} \pmb x^{\top} \sum_{k=1}^{K} \Sigma_{k=1}^{-1} \pmb x-\pmb x^{T} \sum_{k=1}^{K}\Sigma_{k}^{-1} \pmb u_{k}-\sum_{k=1}^{T} \pmb u_{k}^{T} \Sigma_{k}^{-1} \pmb x+M \right] \\ &= \eta^{\prime} \exp \left[-\frac{1}{2}\left(\pmb x-\left(\sum_{k=1}^{k} \Sigma_{k}^{-1}\right)^{-1} \sum_{k=1}^{k} \Sigma_{k}^{-1} \pmb u_{k}\right)^{T} \sum_{k=1}^{K} \Sigma_{k}^{-1}\left(\pmb x-\left(\sum_{k=1}^{K} \Sigma_{k}^{-1}\right)^{-1} \sum_{k=1}^{k} \Sigma_{k}^{-1} \pmb u_{k}\right)\right] \\ &= \eta^{\prime} \exp \left[-\frac{1}{2}(\pmb x-\pmb u)^{\top} \Sigma^{-1}(\pmb x-\pmb u)\right]\left(记 \Sigma^{-1}=\sum_{k=1}^{K} \Sigma_{k}^{-1} \quad \pmb u=\Sigma^{-1} \sum_{k=1}^{K} \Sigma_{k}^{-1} \pmb u_{k}\right) \end{aligned} ηk=1Kexp(21(xxxuuuk)TΣk1(xxxuuuk))=ηexp[21(xxxTk=1KΣk1xxxxxxk=1kΣk1uuukk=1kuuukΣk1xxx+M)+21M+21k=1KuuukΣk1uuuk]=ηexp[21M+21k=1KuuukTΣk1uuuk]exp[21xxxk=1KΣk=11xxxxxxTk=1KΣk1uuukk=1TuuukTΣk1xxx+M]=ηexp21xxx(k=1kΣk1)1k=1kΣk1uuukTk=1KΣk1xxx(k=1KΣk1)1k=1kΣk1uuuk=ηexp[21(xxxuuu)Σ1(xxxuuu)](Σ1=k=1KΣk1uuu=Σ1k=1KΣk1uuuk)

上式中
{Σ−1=∑k=1KΣk−1u=Σ∑k=1KΣk−1uk⇒Σ−1u=∑k=1kΣk−1ukη′=ηexp⁡[12u⊤Σ−1u+12∑k=1kuk⊤Σk−1uk] \left\{\begin{array}{l} \Sigma^{-1}=\sum_{k=1}^{K} \Sigma_{k}^{-1} \\ \pmb u=\Sigma \sum_{k=1}^{K} \Sigma_{k}^{-1} \pmb u_{k} \Rightarrow \Sigma^{-1} \pmb u=\sum_{k=1}^{k} \Sigma_{k}^{-1} \pmb u_{k} \\ \eta^{\prime}=\eta \exp \left[\frac{1}{2} \pmb u^{\top} \Sigma^{-1} \pmb u+\frac{1}{2} \sum_{k=1}^{k} \pmb u_{k}^{\top} \Sigma_{k}^{-1} \pmb u_{k}\right] \end{array}\right. Σ1=k=1KΣk1uuu=Σk=1KΣk1uuukΣ1uuu=k=1kΣk1uuukη=ηexp[21uuuΣ1uuu+21k=1kuuukΣk1uuuk]
原命题得证

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值