1.证明∫−∞∞12πσ2e−(x−u)22σ2dx=1\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-u)^ 2}{2 \sigma^{2}}} d x=1∫−∞∞2πσ21e−2σ2(x−u)2dx=1
证:
令 x−u2σ=t,t∈(−∞,∞)\frac{x-u}{\sqrt{2} \sigma}=t, t \in(-\infty, \infty)2σx−u=t,t∈(−∞,∞)
故x=2σt+ux=\sqrt{2} \sigma t+ux=2σt+u,有
∫−∞∞12πσ2e−(x−u)22σ2dx=∫−∞∞12πσ2e−t2d(2σt+u)=∫−∞∞1πe−t2dt\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-u)^{2}}{2 \sigma^{2}}} d x=\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-t^{2}} d(\sqrt{2} \sigma t+u)=\int_{-\infty}^{\infty} \frac{1}{\sqrt{\pi}} e^{-t^{2}} d t∫−∞∞2πσ21e−2σ2(x−u)2dx=∫−∞∞2πσ21e−t2d(2σt+u)=∫−∞∞π1e−t2dt
由∫−∞∞e−t2dt=π\int_{-\infty}^{\infty} e^{-t^{2}} d t=\sqrt{\pi}∫−∞∞e−t2dt=π可知
∫−∞∞1πe−t2dt=1\int_{-\infty}^{\infty} \frac{1}{\sqrt{\pi}} e^{-t^{2}} d t=1∫−∞∞π1e−t2dt=1
故
∫−∞∞12πσ2e−(x−μ)22σ2dx=1\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x=1∫−∞∞2πσ21e−2σ2(x−μ)2dx=1
2.(第二章第1题)μ,v\pmb \mu, \pmb vμμμ,vvv为维度相同的列向量,证明
u⊤v=tr(vu⊤) \pmb u^{\top} \pmb v=\operatorname{tr}\left(\pmb v \pmb u^{\top}\right) uuu⊤vvv=tr(vvvuuu⊤)
证:
令 μ=[μ1,⋯ ,μM]T\pmb \mu=[ \mu_1, \cdots, \mu_M]^Tμμμ=[μ1,⋯,μM]T,v=[v1,⋯ ,vM]T\pmb v=[ v_1, \cdots, v_M]^Tvvv=[v1,⋯,vM]T,则
vu⊤=[v1⋮vm][u1⋯⋅um]=[v1u1⋯⋯⋯v1um⋮⋱⋮⋮vkuk⋮⋮⋱⋮vmu1⋯⋯⋯vmum]
\pmb v \pmb u^{\top}=\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{m}
\end{array}\right]\left[u_{1} \cdots \cdot u_{m}\right]=\left[\begin{array}{cccc}
v_{1} u_{1} & \cdots & \cdots&\cdots & v_{1}u_{m} \\
\vdots & \ddots & & &\vdots& \\
\vdots & & v_{k} u_{k}&&\vdots&\\
\vdots & & &\ddots&\vdots \\
v_{m} u_{1} & \cdots &\cdots & \cdots & v_{m}u_m
\end{array}\right]
vvvuuu⊤=⎣⎢⎡v1⋮vm⎦⎥⎤[u1⋯⋅um]=⎣⎢⎢⎢⎢⎢⎢⎢⎡v1u1⋮⋮⋮vmu1⋯⋱⋯⋯vkuk⋯⋯⋱⋯v1um⋮⋮⋮vmum⎦⎥⎥⎥⎥⎥⎥⎥⎤
故
tr(vu⊤)=∑i=1mviui=u⊤v
\operatorname{tr}\left(\pmb v \pmb u^{\top}\right)=\sum_{i=1}^{m} v_{i} u_{i}=\pmb u^{\top} \pmb v
tr(vvvuuu⊤)=i=1∑mviui=uuu⊤vvv
原命题得证
3.(第二章第4题)对于高斯分布随机变量,x∼N(μ,Σ)\pmb x \sim N(\pmb \mu, \pmb \Sigma)xxx∼N(μμμ,ΣΣΣ),证明
μ=E(x)=∫−∞∞x1(2π)Ndet(Σ)exp(−12(x−u)TΣ−1(x−u))dx\pmb\mu=E(\pmb x)=\int_{-\infty}^{\infty} \pmb x \frac{1}{\sqrt{(2 \pi)^{N } det( \Sigma)}} \exp \left(-\frac{1}{2}(\pmb x-\pmb u)^{T} \Sigma^{-1}(\pmb x-\pmb u)\right) d\pmb xμμμ=E(xxx)=∫−∞∞xxx(2π)Ndet(Σ)1exp(−21(xxx−uuu)TΣ−1(xxx−uuu))dxxx
证:
因为Σ\SigmaΣ对称半正定且Σ\SigmaΣ可逆
故Σ\SigmaΣ正定且可相似对角化,即存在单位正交矩阵Q使得
Σ=Q⊤ΛQ\Sigma=Q^{\top} \Lambda QΣ=Q⊤ΛQ
其中Λ=[λ1⋱λN]\Lambda=\left[\begin{array}{lll} \lambda_{1} & & \\ & \ddots & \lambda_{N} \end{array}\right]Λ=[λ1⋱λN],λi\lambda_{i}λi为Σ\SigmaΣ特征值且λi>0\lambda_{i}>0λi>0
故
u=E(x)=∫−∞∞x1(2π)Ndet(Σ)exp(−12(x−u)⊤Q⊤ΛQ(x−u))dx\pmb u=E( \pmb x)=\int_{-\infty}^{\infty} \pmb x \frac{1}{\sqrt{(2 \pi )^{N} d e t(\Sigma)}} \exp \left(-\frac{1}{2}(\pmb x- \pmb u)^{\top} Q^{\top} \Lambda Q(\pmb x- \pmb u)\right) d \pmb xuuu=E(xxx)=∫−∞∞xxx(2π)Ndet(Σ)1exp(−21(xxx−uuu)⊤Q⊤ΛQ(xxx−uuu))dxxx
令t=Q(x−u)\pmb t=Q(\pmb x- \pmb u)ttt=Q(xxx−uuu), 则x=Q−1t+μ\pmb x=Q^{-1} \pmb t+ \pmb \muxxx=Q−1ttt+μμμ
因为Q的行列式为1,
故
u=E(x)=∫−∞∞Q−1t+u(2π)Ndet(Σ)exp(−12t⊤Λt)dt=∫−∞∞Q−1t(2π)Ndet(Σ)exp(−12t⊤Λt)dt+∫−∞∞u(2π)Ndet(Σ)exp(−12t⊤Λt)dt\begin{aligned}
u=E(x)&=\int_{-\infty}^{\infty} \frac{Q^{-1} \pmb t+ \pmb u}{\sqrt{(2 \pi)^{N} det(\Sigma)}} \exp \left(-\frac{1}{2} \pmb t^{\top} \Lambda \pmb t\right) d \pmb t \\
&= \int_{-\infty}^{\infty} \frac{Q^{-1} \pmb t}{\sqrt{(2 \pi)^{N} \operatorname{det}(\Sigma)}} \exp \left(-\frac{1}{2} \pmb t^{\top} \Lambda \pmb t\right) d \pmb t+\int_{-\infty}^{\infty} \frac{\pmb u}{\sqrt{(2 \pi)^{N}det(\Sigma)} } \exp \left(-\frac{1}{2} \pmb t^{\top} \Lambda \pmb t\right) d \pmb t\\
\end{aligned}u=E(x)=∫−∞∞(2π)Ndet(Σ)Q−1ttt+uuuexp(−21ttt⊤Λttt)dttt=∫−∞∞(2π)Ndet(Σ)Q−1tttexp(−21ttt⊤Λttt)dttt+∫−∞∞(2π)Ndet(Σ)uuuexp(−21ttt⊤Λttt)dttt
因第一项中被积项为奇函数,积分后为0
有
u=E(x)=∫−∞∞u(2π)Ndet(Σ)exp(−12t⊤Λt)dt=∫−∞∞u(2π)Ndet(Σ)exp(−12∑i=1N1λiti2)dt=u(2π)N∏i=NNλi∏i=1N∫−∞∞exp(−12λiti2)dti
\begin{aligned}
\pmb u=E(\pmb x)&=\int_{-\infty}^{\infty} \frac{\pmb u}{\sqrt{(2 \pi)^{N} d e t(\Sigma)}} \exp \left(-\frac{1}{2} \pmb t^{\top} \Lambda \pmb t\right) d \pmb t\\
&=\int_{-\infty}^{\infty} \frac{\pmb u}{\sqrt{(2 \pi)^{N}det(\Sigma)} } \exp \left(-\frac{1}{2} \sum_{i=1}^{N} \frac{1}{\lambda_{i}} t_{i}^{2}\right) d \pmb t\\
&=\frac{\pmb u}{\sqrt{(2 \pi)^{N}\prod_{i=N}^{N} \lambda_{i}} } \prod_{i=1}^{N} \int_{-\infty}^{\infty} \exp \left(-\frac{1}{2} \lambda_{i} t_{i}^{2}\right) d t_{i}
\end{aligned}
uuu=E(xxx)=∫−∞∞(2π)Ndet(Σ)uuuexp(−21ttt⊤Λttt)dttt=∫−∞∞(2π)Ndet(Σ)uuuexp(−21i=1∑Nλi1ti2)dttt=(2π)N∏i=NNλiuuui=1∏N∫−∞∞exp(−21λiti2)dti
令zi=12λitiz_i=\frac{1}{\sqrt{2 \lambda_i}}t_izi=2λi1ti,有
μ=μ(2π)N∏i=1Nλi∏i=1N2λi∫−∞∞exp(−zi2)dzi=μ \begin{aligned} \pmb \mu &= \frac{\pmb \mu}{\sqrt{(2 \pi)^{N} \prod_{i=1}^{N} \lambda_{i}} } \prod_{i=1}^{N} \sqrt{2 \lambda_{i}} \int_{-\infty}^{\infty} \exp \left(-z_{i}^{2}\right) d z_{i} \\ &= \pmb \mu \end{aligned} μμμ=(2π)N∏i=1Nλiμμμi=1∏N2λi∫−∞∞exp(−zi2)dzi=μμμ
原式得证
##E 4.(第二章第5题)对于高斯分布随机变量,x∼N(μ,Σ)\pmb x \sim N(\pmb \mu, \pmb \Sigma)xxx∼N(μμμ,ΣΣΣ),证明
Σ=E[(x−u)(x−u)⊤]=∫−∞∞(x−u)(x−u)⊤1(2π)Ndet(Σ)exp[−12(x−u)⊤Σ−1(x−u)]dx\Sigma= E\left[(\pmb x- \pmb u)(\pmb x- \pmb u)^{\top}\right]=\int_{-\infty}^{\infty}(\pmb x-\pmb u)(\pmb x-\pmb u)^{\top} \frac{1}{\sqrt{(2 \pi)^{N} \operatorname{det}(\Sigma)}} \exp \left[-\frac{1}{2}(\pmb x-\pmb u)^{\top} \Sigma^{-1}(\pmb x-\pmb u)\right] d \pmb xΣ=E[(xxx−uuu)(xxx−uuu)⊤]=∫−∞∞(xxx−uuu)(xxx−uuu)⊤(2π)Ndet(Σ)1exp[−21(xxx−uuu)⊤Σ−1(xxx−uuu)]dxxx
证:
令f(x)=Σ(x−u)(x−u)⊤Σ−1f(\pmb x)=\Sigma(\pmb x-\pmb u)(\pmb x-\pmb u)^{\top} \Sigma^{-1}f(xxx)=Σ(xxx−uuu)(xxx−uuu)⊤Σ−1,先求f(x)f(\pmb x)f(xxx)期望:
E[f(x)]=∫−∞∞f(x)p(x)dx=∫−∞∞∑(x−u)(x−u)TΣ−1(2π)Ndet(Σ)exp(−12(x−u)⊤Σ−1(x−u))dx=∫−∞∞∑yyT∑−1(2π)Ndet(Σ)exp(−12yTΣ−1y)dy=∫−∞∞Σy(2π)Ndet(Σ)(exp(−12y⊤Σ−1y)Σ−1y)⊤dy=∫−∞∞Σy(2π)Ndet(Σ)dexp⊤(−12y⊤Σ−1y)=−Σ∫−∞∞y(2π)Ndet(Σ)dexp(−12y⊤Σ−1y)=−Σ[y(2π)Ndet(Σ)exp(−12y⊤Σ−1y)∣−∞∞−∫−∞∞1(2π)NdetΣexp(−12y⊤Σ−1y)dy]=−Σ[0−I]=Σ \begin{aligned} E[f(\pmb x)] &=\int_{-\infty}^{\infty} f(\pmb x) p(\pmb x) d \pmb x \\ &=\int_{-\infty}^{\infty} \frac{\sum(\pmb x-\pmb u)(\pmb x-\pmb u)^{T} \Sigma^{-1}}{\sqrt{(2 \pi)^{N}\operatorname{det}(\Sigma)} } \exp \left(-\frac{1}{2}(\pmb x-\pmb u)^{\top} \Sigma^{-1}(\pmb x-\pmb u)\right) d \pmb x \\ &=\int_{-\infty}^{\infty} \frac{\sum \pmb y \pmb y^{T} \sum^{-1}}{\sqrt{(2 \pi)^{N}d e t(\Sigma)} } \exp \left(-\frac{1}{2} \pmb y^{T} \Sigma^{-1} \pmb y\right) d \pmb y \\ &=\int_{-\infty}^{\infty} \frac{\Sigma \pmb y}{\sqrt{(2 \pi)^{N} \operatorname{det}(\Sigma)}}\left(\exp \left(-\frac{1}{2} \pmb y^{\top} \Sigma^{-1} \pmb y\right) \Sigma^{-1} \pmb y\right)^{\top} d \pmb y \\ &=\int_{-\infty}^{\infty} \frac{\Sigma \pmb y}{\sqrt{(2 \pi)^{N}\operatorname{det}(\Sigma)} } d \exp ^{\top}\left(-\frac{1}{2} \pmb y^{\top} \Sigma^{-1} \pmb y\right) \\ &=-\Sigma \int_{-\infty}^{\infty} \frac{\pmb y}{\sqrt{(2 \pi)^{N} \operatorname{det}(\Sigma)}} d \exp \left(-\frac{1}{2} \pmb y^{\top} \Sigma^{-1} \pmb y\right) \\ &=-\Sigma\left[\left.\frac{\pmb y}{\sqrt{(2 \pi)^{N} d e t(\Sigma)}} \exp \left(-\frac{1}{2} \pmb y^{\top} \Sigma^{-1} \pmb y\right)\right|_{-\infty} ^{\infty}-\int_{-\infty}^{\infty} \frac{1}{\sqrt{(2 \pi)^{N} d e t{\Sigma}}} \exp \left(-\frac{1}{2} \pmb y^{\top} \Sigma^{-1} \pmb y\right) d\pmb y\right]\\ &=-\Sigma[0-I]\\ &=\Sigma \end{aligned} E[f(xxx)]=∫−∞∞f(xxx)p(xxx)dxxx=∫−∞∞(2π)Ndet(Σ)∑(xxx−uuu)(xxx−uuu)TΣ−1exp(−21(xxx−uuu)⊤Σ−1(xxx−uuu))dxxx=∫−∞∞(2π)Ndet(Σ)∑yyyyyyT∑−1exp(−21yyyTΣ−1yyy)dyyy=∫−∞∞(2π)Ndet(Σ)Σyyy(exp(−21yyy⊤Σ−1yyy)Σ−1yyy)⊤dyyy=∫−∞∞(2π)Ndet(Σ)Σyyydexp⊤(−21yyy⊤Σ−1yyy)=−Σ∫−∞∞(2π)Ndet(Σ)yyydexp(−21yyy⊤Σ−1yyy)=−Σ[(2π)Ndet(Σ)yyyexp(−21yyy⊤Σ−1yyy)∣∣∣∣∣−∞∞−∫−∞∞(2π)NdetΣ1exp(−21yyy⊤Σ−1yyy)dyyy]=−Σ[0−I]=Σ
上面推导过程用到了如下性质:
1.若Σ\SigmaΣ对称正定
dy⊤Σ−1ydy=(Σ−1+Σ−T)y=2Σ−1y\frac{d \pmb y^{\top} \Sigma^{-1} \pmb y}{d \pmb y}=\left(\Sigma^{-1}+\Sigma^{-T}\right) \pmb y=2 \Sigma^{-1} \pmb ydyyydyyy⊤Σ−1yyy=(Σ−1+Σ−T)yyy=2Σ−1yyy
2.exp(−12y⊤Σ−1y)\exp \left(-\frac{1}{2} \pmb y^{\top} \Sigma^{-1} \pmb y\right)exp(−21yyy⊤Σ−1yyy)对称(可从泰勒展开得出)
因
E[f(x)]=E[Σ(x−u)(x−u)⊤Σ−1]=ΣE[(x−u)(x−u)⊤]Σ−1=Σ
\begin{aligned}
E[f(\pmb x)] &=E\left[\Sigma(\pmb x-\pmb u)(\pmb x-\pmb u)^{\top} \Sigma^{-1}\right] \\
&=\Sigma E\left[(\pmb x-\pmb u)(\pmb x-\pmb u)^{\top}\right] \Sigma^{-1} \\
&=\Sigma
\end{aligned}
E[f(xxx)]=E[Σ(xxx−uuu)(xxx−uuu)⊤Σ−1]=ΣE[(xxx−uuu)(xxx−uuu)⊤]Σ−1=Σ
故E[(x−u)(x−u)⊤]=ΣE\left[(\pmb x-\pmb u)(\pmb x-\pmb u)^{\top}\right]=\SigmaE[(xxx−uuu)(xxx−uuu)⊤]=Σ
原命题得证
5.(第二章第6题)对于K个相互独立的高斯变量,xk∼N(μk,Σk)x_k \sim N(\mu_k, \Sigma_k)xk∼N(μk,Σk),请证明它们的归一化积仍是高斯分布
exp(−12(x−u)⊤Σ−1(x−u))=η∏k=1Kexp(−12(x−uk)⊤Σk−1(x−uk)) \exp \left(-\frac{1}{2}(\pmb x-\pmb u)^{\top} \Sigma^{-1}(\pmb x-\pmb u)\right)=\eta \prod_{k=1}^{K} \exp \left(-\frac{1}{2}\left( \pmb x-\pmb u_{k}\right)^{\top} \Sigma_{k}^{-1}\left( \pmb x- \pmb u_{k}\right)\right) exp(−21(xxx−uuu)⊤Σ−1(xxx−uuu))=ηk=1∏Kexp(−21(xxx−uuuk)⊤Σk−1(xxx−uuuk))
其中
Σ−1=∑k=1KΣk−1Σ−1u=∑k=1KΣk−1uk
\Sigma^{-1}=\sum_{k=1}^{K} \Sigma_{k}^{-1} \quad \Sigma^{-1} \pmb u=\sum_{k=1}^{K} \Sigma_{k}^{-1} u_{k}
Σ−1=k=1∑KΣk−1Σ−1uuu=k=1∑KΣk−1uk
证明:
η∏k=1Kexp(−12(x−uk)TΣk−1(x−uk))=ηexp[∑k=1K−12(x−uk)⊤Σk−1(x−uk)]=ηexp[−12x⊤∑k=1kΣk−1x−x⊤∑k=1kΣk−1uk−∑k=1kuk⊤Σk−1x+∑k=1kuk⊤Σk−1uk)]
\begin{aligned}
\eta \prod_{k=1}^{K} \exp \left(-\frac{1}{2}\left(\pmb x- \pmb u_{k }\right)^{T} \Sigma_{k}^{-1}\left(\pmb x-\pmb u_{k}\right)\right)
&= \eta \exp \left[\sum_{k=1}^{K}-\frac{1}{2}\left(\pmb x-\pmb u_{k}\right)^{\top} \Sigma_{k}^{-1}\left(\pmb x-\pmb u_{k}\right)\right] \\
&= \eta \exp \left[-\frac{1}{2} \pmb x^{\top} \sum_{k=1}^{k} \Sigma_{k}^{-1} \pmb x-\pmb x^{\top} \sum_{k=1}^{k} \Sigma_{k}^{-1} \pmb u_{k}-\sum_{k=1}^{k} \pmb u_{k}^{\top} \Sigma_{k}^{-1} \pmb x+\sum_{k=1}^{k} \pmb u_{k}^{\top} \Sigma_{k}^{-1} \pmb u_{k}) \right] \\
\end{aligned}
ηk=1∏Kexp(−21(xxx−uuuk)TΣk−1(xxx−uuuk))=ηexp[k=1∑K−21(xxx−uuuk)⊤Σk−1(xxx−uuuk)]=ηexp[−21xxx⊤k=1∑kΣk−1xxx−xxx⊤k=1∑kΣk−1uuuk−k=1∑kuuuk⊤Σk−1xxx+k=1∑kuuuk⊤Σk−1uuuk)]
记M=(∑k=1KΣk−1Uk)⊤(∑k=1k∑k−1)−1(∑k=1kΣk−1Uk)M=\left(\sum_{k=1}^{K} \Sigma_{k}^{-1} U_{k}\right)^{\top}\left(\sum_{k=1}^{k} \sum_{k}^{-1}\right)^{-1}\left(\sum_{k=1}^{k} \Sigma_{k}^{-1} U_{k}\right)M=(∑k=1KΣk−1Uk)⊤(∑k=1k∑k−1)−1(∑k=1kΣk−1Uk)
η∏k=1Kexp(−12(x−uk)TΣk−1(x−uk))=ηexp[−12(xT∑k=1KΣk−1x−x⊤∑k=1kΣk−1uk−∑k=1kuk⊤Σk−1x+M)+12M+12∑k=1Kuk⊤Σk−1uk]=ηexp[12M+12∑k=1KukTΣk−1uk]exp[−12x⊤∑k=1KΣk=1−1x−xT∑k=1KΣk−1uk−∑k=1TukTΣk−1x+M]=η′exp[−12(x−(∑k=1kΣk−1)−1∑k=1kΣk−1uk)T∑k=1KΣk−1(x−(∑k=1KΣk−1)−1∑k=1kΣk−1uk)]=η′exp[−12(x−u)⊤Σ−1(x−u)](记Σ−1=∑k=1KΣk−1u=Σ−1∑k=1KΣk−1uk) \begin{aligned} \eta \prod_{k=1}^{K} \exp \left(-\frac{1}{2}\left(\pmb x- \pmb u_{k }\right)^{T} \Sigma_{k}^{-1}\left(\pmb x-\pmb u_{k}\right)\right) &= \eta \exp \left[-\frac{1}{2}\left(\pmb x^T \sum_{k=1}^{K} \Sigma_{k}^{-1} \pmb x- \pmb x^{\top} \sum_{k=1}^{k} \Sigma_{k}^{-1} \pmb u_{k}-\sum_{k=1}^{k} \pmb u_{k}^{\top} \Sigma_{k}^{-1} \pmb x+M\right)+\frac{1}{2} M+\frac{1}{2} \sum_{k=1}^{K} \pmb u_{k}^{\top} \Sigma_{k}^{-1} \pmb u_{k}\right] \\ &= \eta \exp \left[\frac{1}{2} M+\frac{1}{2} \sum_{k=1}^{K} \pmb u_{k}^{T} \Sigma_{k}^{-1} \pmb u_{k}\right] \exp \left[-\frac{1}{2} \pmb x^{\top} \sum_{k=1}^{K} \Sigma_{k=1}^{-1} \pmb x-\pmb x^{T} \sum_{k=1}^{K}\Sigma_{k}^{-1} \pmb u_{k}-\sum_{k=1}^{T} \pmb u_{k}^{T} \Sigma_{k}^{-1} \pmb x+M \right] \\ &= \eta^{\prime} \exp \left[-\frac{1}{2}\left(\pmb x-\left(\sum_{k=1}^{k} \Sigma_{k}^{-1}\right)^{-1} \sum_{k=1}^{k} \Sigma_{k}^{-1} \pmb u_{k}\right)^{T} \sum_{k=1}^{K} \Sigma_{k}^{-1}\left(\pmb x-\left(\sum_{k=1}^{K} \Sigma_{k}^{-1}\right)^{-1} \sum_{k=1}^{k} \Sigma_{k}^{-1} \pmb u_{k}\right)\right] \\ &= \eta^{\prime} \exp \left[-\frac{1}{2}(\pmb x-\pmb u)^{\top} \Sigma^{-1}(\pmb x-\pmb u)\right]\left(记 \Sigma^{-1}=\sum_{k=1}^{K} \Sigma_{k}^{-1} \quad \pmb u=\Sigma^{-1} \sum_{k=1}^{K} \Sigma_{k}^{-1} \pmb u_{k}\right) \end{aligned} ηk=1∏Kexp(−21(xxx−uuuk)TΣk−1(xxx−uuuk))=ηexp[−21(xxxTk=1∑KΣk−1xxx−xxx⊤k=1∑kΣk−1uuuk−k=1∑kuuuk⊤Σk−1xxx+M)+21M+21k=1∑Kuuuk⊤Σk−1uuuk]=ηexp[21M+21k=1∑KuuukTΣk−1uuuk]exp[−21xxx⊤k=1∑KΣk=1−1xxx−xxxTk=1∑KΣk−1uuuk−k=1∑TuuukTΣk−1xxx+M]=η′exp⎣⎢⎡−21⎝⎛xxx−(k=1∑kΣk−1)−1k=1∑kΣk−1uuuk⎠⎞Tk=1∑KΣk−1⎝⎛xxx−(k=1∑KΣk−1)−1k=1∑kΣk−1uuuk⎠⎞⎦⎥⎤=η′exp[−21(xxx−uuu)⊤Σ−1(xxx−uuu)](记Σ−1=k=1∑KΣk−1uuu=Σ−1k=1∑KΣk−1uuuk)
上式中
{Σ−1=∑k=1KΣk−1u=Σ∑k=1KΣk−1uk⇒Σ−1u=∑k=1kΣk−1ukη′=ηexp[12u⊤Σ−1u+12∑k=1kuk⊤Σk−1uk]
\left\{\begin{array}{l}
\Sigma^{-1}=\sum_{k=1}^{K} \Sigma_{k}^{-1} \\
\pmb u=\Sigma \sum_{k=1}^{K} \Sigma_{k}^{-1} \pmb u_{k} \Rightarrow \Sigma^{-1} \pmb u=\sum_{k=1}^{k} \Sigma_{k}^{-1} \pmb u_{k} \\
\eta^{\prime}=\eta \exp \left[\frac{1}{2} \pmb u^{\top} \Sigma^{-1} \pmb u+\frac{1}{2} \sum_{k=1}^{k} \pmb u_{k}^{\top} \Sigma_{k}^{-1} \pmb u_{k}\right]
\end{array}\right.
⎩⎪⎨⎪⎧Σ−1=∑k=1KΣk−1uuu=Σ∑k=1KΣk−1uuuk⇒Σ−1uuu=∑k=1kΣk−1uuukη′=ηexp[21uuu⊤Σ−1uuu+21∑k=1kuuuk⊤Σk−1uuuk]
原命题得证