You are given an array of intervals
, where intervals[i] = [starti, endi]
and each starti
is unique.
The right interval for an interval i
is an interval j
such that startj >= endi
and startj
is minimized. Note that i
may equal j
.
Return an array of right interval indices for each interval i
. If no right interval exists for interval i
, then put -1
at index i
.
Example 1:
Input: intervals = [[1,2]] Output: [-1] Explanation: There is only one interval in the collection, so it outputs -1.
Example 2:
Input: intervals = [[3,4],[2,3],[1,2]] Output: [-1,0,1] Explanation: There is no right interval for [3,4]. The right interval for [2,3] is [3,4] since start0 = 3 is the smallest start that is >= end1 = 3. The right interval for [1,2] is [2,3] since start1 = 2 is the smallest start that is >= end2 = 2.
Example 3:
Input: intervals = [[1,4],[2,3],[3,4]] Output: [-1,2,-1] Explanation: There is no right interval for [1,4] and [3,4]. The right interval for [2,3] is [3,4] since start2 = 3 is the smallest start that is >= end1 = 3.
Constraints:
1 <= intervals.length <= 2 * 104
intervals[i].length == 2
-106 <= starti <= endi <= 106
- The start point of each interval is unique.
其实思路挺直观的,因为要找每个interval里end对应的最接近的下一个start值,所以dependency没有很多,可以直接采用一个treemap记录start和它对应的index,直接在treemap里采用built in的ceilingEntry进行查找。
Runtime: 43 ms, faster than 56.69% of Java online submissions for Find Right Interval.
Memory Usage: 57.7 MB, less than 11.43% of Java online submissions for Find Right Interval.
class Solution {
public int[] findRightInterval(int[][] intervals) {
int[] result = new int[intervals.length];
TreeMap<Integer, Integer> map = new TreeMap<>();
for (int i = 0; i < intervals.length; i++) {
map.put(intervals[i][0], i);
}
for (int i = 0; i < intervals.length; i++) {
Map.Entry<Integer, Integer> ceilingEntry = map.ceilingEntry(intervals[i][1]);
if (ceilingEntry != null) {
result[i] = ceilingEntry.getValue();
} else {
result[i] = -1;
}
}
return result;
}
}
如果不用treemap的话,可以用一个hashmap存start和对应的index,然后用一个数组存start并sort它,然后采用binary search的方法来查找最小的>= end的start值,回到hashmap里找下标。先不写解法了,以后有空回来写。https://leetcode.com/problems/find-right-interval/discuss/631133/Java-O(n-logn)-solution-HashMap-%2B-Sort-%2B-Binary-Search
还有人用了两个heap来做,好像也合理,但没仔细看:Loading...