图像局部对比度归一化(LCN)

1. 灰度图像局部对比度归一化

代码1:
def LocalNormalization(patch, P=3, Q=3, C=1):
    kernel = np.ones((P, Q)) / (P * Q)
    patch_mean = convolve2d(patch, kernel, boundary='symm', mode='same')
    patch_sm = convolve2d(np.square(patch), kernel, boundary='symm', mode='same')
    patch_std = np.sqrt(np.maximum(patch_sm - np.square(patch_mean), 0)) + C
    patch_ln = torch.from_numpy((patch - patch_mean) / patch_std).float().unsqueeze(0)

 

代码2:

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import pdb

device = torch.device(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值