IDEA开发CDH

新建Maven项目

打开 –> File –> New –> Project

这里写图片描述

点击Next

这里写图片描述

这里写图片描述

点击Finish

编写MapReduce程序

1.编写 Maven 依赖:

这里写图片描述

依照Cloudera官方文档进行配置: 
Using the CDH 5 Maven Repository

Maven Artifacts for CDH 5.11.x Releases

pom.xml:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>com.cloudera.hadoop</groupId>
    <artifactId>bigdata</artifactId>
    <version>1.0-SNAPSHOT</version>

    <repositories>
        <repository>
            <id>cloudera</id>
            <url>https://repository.cloudera.com/artifactory/cloudera-repos/</url>
            <releases>
                <enabled>true</enabled>
            </releases>
            <snapshots>
                <enabled>false</enabled>
            </snapshots>
        </repository>
    </repositories>

    <properties>
        <cdh.version>2.6.0-cdh5.11.1</cdh.version>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>${cdh.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-core</artifactId>
            <version>2.6.0-mr1-cdh5.11.1</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-hdfs</artifactId>
            <version>${cdh.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>2.6.0-mr1-cdh5.11.1</version>
        </dependency>
    </dependencies>
</project>

2.编写程序

这里写图片描述

(1)WordCount2.class

package wordcount2;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

import java.io.IOException;
import java.util.StringTokenizer;

public class WordCount2 {
    public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>{
        private final static IntWritable one = new IntWritable(1);
        private Text word = new Text();

        @Override
        protected void map(Object key, Text value, Context context) throws IOException, InterruptedException {
            StringTokenizer itr = new StringTokenizer(value.toString());
            while (itr.hasMoreTokens()){
                word.set(itr.nextToken());
                context.write(word, one);
            }
        }
    }

    public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable>{
        private IntWritable result = new IntWritable();

        @Override
        protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
            int sum = 0;
            for(IntWritable val : values){
                sum += val.get();
            }
            result.set(sum);
            context.write(key, result);
        }
    }

    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
        Configuration conf = new Configuration();

        String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();

        if(otherArgs.length != 2){
            System.err.println("Usage: wordcount <in> <out>");
            System.exit(2);
        }

        Job job = new Job(conf, "word count2");
        job.setJarByClass(WordCount2.class);
        job.setMapperClass(TokenizerMapper.class);
        job.setReducerClass(IntSumReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);

        FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
        FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));

        boolean flag = job.waitForCompletion(true);
        System.out.println("Succeed! " + flag);
        System.exit(flag ? 0 : 1);
        System.out.println();
    }
}
  • (2)配置运行程序的参数:

这里写图片描述

(3)hadoop配置文件

这里写图片描述

将hadoop 配置文件放到 src/main/resources文件夹下

这里写图片描述

3. mvn compile & mvn package

这里写图片描述

点击右侧 Maven Projects –> compile –> package

或者在终端运行 mvn compile 和 mvn package

则生成jar文件。

这里写图片描述

上传jar文件并运行

将jar文件重新命名为wordcount2.jar,并上传到CDH5 集群中。

在集群上执行:

hadoop jar wordcount2.jar wordcount2.WordCount2 /user/hdfs/mapreduce/wordcount/input /user/hdfs/mapreduce/wordcount/output
  • 1
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.youkuaiyun.com/u011026329/article/details/79173732
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值