sum
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total Submission(s): 3219 Accepted Submission(s): 1175
Problem Description
Given a sequence, you're asked whether there exists a consecutive subsequence whose sum is divisible by m. output YES, otherwise output NO
Input
The first line of the input has an integer T (1≤T≤10),
which represents the number of test cases.
For each test case, there are two lines:
1.The first line contains two positive integers n, m (1≤n≤100000, 1≤m≤5000).
2.The second line contains n positive integers x (1≤x≤100) according to the sequence.
For each test case, there are two lines:
1.The first line contains two positive integers n, m (1≤n≤100000, 1≤m≤5000).
2.The second line contains n positive integers x (1≤x≤100) according to the sequence.
Output
Output T lines, each line print a YES or NO.
Sample Input
2 3 3 1 2 3 5 7 6 6 6 6 6
Sample Output
YES NO
抽屉原理:如果现在有3个苹果,放进2个抽屉,那么至少有一个抽屉里面会有两个苹果
抽屉原理的运用
现在假设有一个正整数序列a1,a2,a3,a4.....an,试证明我们一定能够找到一段连续的序列和,让这个和是n的倍数,该命题的证明就用到了抽屉原理
我们可以先构造一个序列si=a1+a2+...ai
然后分别对于si取模,如果其中有一个sk%n==0,那么a1+a2+...+ak就一定是n的倍数(该种情况得证)
下面是上一种情况的反面,即任何一个sk对于n的余数都不为0
对于这种情况,我们可以如下考虑,因为si%n!=0
那么si%n的范围必然在1——(n-1),所以原序列si就产生了n个范围在1——(n-1)的余数,于是抽屉原理就来了,n个数放进n-1个盒子里面,必然至少有两个余数会重复,那么这两个sk1,sk2之差必然是n的倍数,
而sk1-sk2是一段连续的序列,那么原命题就得到了证明了
http://blog.youkuaiyun.com/yao1373446012/article/details/52082693
首先预处理一下前i项的和(前缀和),再遍历前缀和数组,若sum[i]%m或%m的余数出现过>=2次(sum[i]%m==sum[j]%m),则输出YES
ps.这道题数据真的很弱,导致我之前用了一种错的方法也A了。。。。。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int a[100010];
int sum[100010];
int rest[5010];
int main()
{
int t,n,m;
scanf("%d",&t);
while(t--)
{
int flag=0;
scanf("%d%d",&n,&m);
memset(sum,0,sizeof(sum));
memset(rest,0,sizeof(rest));
for(int i=0;i<n;i++)
{
scanf("%d",&a[i]);
if(i==0) sum[i]=a[i];
else sum[i]=sum[i-1]+a[i];
if(sum[i]%m==0) flag=1;
else
{
if(rest[sum[i]%m]==0)
rest[sum[i]%m]=1;
else
flag=1;
}
}
if(flag) printf("YES\n");
else printf("NO\n");
}
return 0;
}