pytorch获取module的classname

import torch
conv = torch.nn.Conv2d(1,8,(2,3))
bn = torch.nn.BatchNorm2d(8)
l = [conv,bn]
for item in l:
    print(item.__class__.__name__)

输出结果:
Conv2d
BatchNorm2d

### 如何在 PyTorch 1.11 中实现 CycleGAN #### 安装依赖库 为了确保环境配置正确,在开始之前需安装必要的 Python 库。可以使用 pip 来完成这些操作。 ```bash pip install torch==1.11.0 torchvision matplotlib opencv-python-headless tqdm ``` #### 数据集准备 数据预处理对于模型训练至关重要。通常情况下,会创建自定义的数据加载器来读取图像并应用转换。 ```python from torch.utils.data import Dataset, DataLoader import os from PIL import Image import torchvision.transforms as transforms class CustomDataset(Dataset): def __init__(self, root_A, root_B, transform=None): self.transform = transform self.files_A = sorted([os.path.join(root_A, f) for f in os.listdir(root_A)]) self.files_B = sorted([os.path.join(root_B, f) for f in os.listdir(root_B)]) def __getitem__(self, index): item_A = self.transform(Image.open(self.files_A[index % len(self.files_A)])) item_B = self.transform(Image.open(self.files_B[index % len(self.files_B)])) return {'A': item_A, 'B': item_B} def __len__(self): return max(len(self.files_A), len(self.files_B)) transform_ = [ transforms.Resize((256, 256)), transforms.ToTensor(), ] dataloader = DataLoader( CustomDataset("./datasets/A", "./datasets/B", transform=transforms.Compose(transform_)), batch_size=1, shuffle=True, num_workers=4) ``` #### 构建网络结构 CycleGAN 的核心在于两个生成对抗网络 (GANs),以及它们之间的循环一致性损失函数。这里展示了一个简化版的 U-Net 结构用于生成器 G 和 F;而判别器 D 则采用了 PatchGAN 设计[^2]。 ```python import torch.nn as nn def weights_init_normal(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: nn.init.normal_(m.weight.data, 0.0, 0.02) class GeneratorUNet(nn.Module): ... class Discriminator(nn.Module): ... # 初始化生成器和判别器,并初始化权重 netG_A2B = GeneratorUNet() netG_B2A = GeneratorUNet() netD_A = Discriminator() netD_B = Discriminator() netG_A2B.apply(weights_init_normal) netG_B2A.apply(weights_init_normal) netD_A.apply(weights_init_normal) netD_B.apply(weights_init_normal) if torch.cuda.is_available(): netG_A2B.cuda() netG_B2A.cuda() netD_A.cuda() netD_B.cuda() ``` #### 训练过程 设置优化器、学习率调度程序以及其他超参数之后就可以进入实际的训练阶段了。此部分展示了如何迭代地更新生成器和判别器的参数。 ```python criterion_GAN = nn.MSELoss() criterion_cycle = nn.L1Loss() criterion_identity = nn.L1Loss() optimizer_G = torch.optim.Adam(itertools.chain(netG_A2B.parameters(), netG_B2A.parameters()), lr=0.0002, betas=(0.5, 0.999)) optimizer_D_A = torch.optim.Adam(netD_A.parameters(), lr=0.0002, betas=(0.5, 0.999)) optimizer_D_B = torch.optim.Adam(netD_B.parameters(), lr=0.0002, betas=(0.5, 0.999)) for epoch in range(num_epochs): for i, batch in enumerate(dataloader): real_A = Variable(input_A.copy_(batch['A'])) real_B = Variable(input_B.copy_(batch['B'])) ###### Generators A2B and B2A ###### optimizer_G.zero_grad() loss_G = ... # Compute generator losses according to the paper loss_G.backward() optimizer_G.step() ########## Discriminators A and B ######### optimizer_D_A.zero_grad() pred_real = netD_A(real_A) loss_D_real = criterion_GAN(pred_real, target_real) fake_A = fake_A_buffer.push_and_pop(fake_A_) pred_fake = netD_A(fake_A.detach()) loss_D_fake = criterion_GAN(pred_fake, target_fake) loss_D_A = (loss_D_real + loss_D_fake)*0.5 loss_D_A.backward() optimizer_D_A.step() optimizer_D_B.zero_grad() pred_real = netD_B(real_B) loss_D_real = criterion_GAN(pred_real, target_real) fake_B = fake_B_buffer.push_and_pop(fake_B_) pred_fake = netD_B(fake_B.detach()) loss_D_fake = criterion_GAN(pred_fake, target_fake) loss_D_B = (loss_D_real + loss_D_fake)*0.5 loss_D_B.backward() optimizer_D_B.step() print("Training completed.") ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值