https://blog.youkuaiyun.com/wuzqChom/article/details/75453327
def bidirectional_dynamic_rnn(
cell_fw, # 前向RNN
cell_bw, # 后向RNN
inputs, # 输入
sequence_length=None,# 输入序列的实际长度(可选,默认为输入序列的最大长度)
initial_state_fw=None, # 前向的初始化状态(可选)
initial_state_bw=None, # 后向的初始化状态(可选)
dtype=None, # 初始化和输出的数据类型(可选)
parallel_iterations=None,
swap_memory=False,
time_major=False,
# 决定了输入输出tensor的格式:如果为true, 向量的形状必须为 `[max_time, batch_size, depth]`.
# 如果为false, tensor的形状必须为`[batch_size, max_time, depth]`.
scope=None
)
返回值:
一个(outputs, output_states)的元组
其中,
1. outputs为(output_fw, output_bw),是一个包含前向cell输出tensor和后向cell输出tensor组成的元组。假设
time_major=false,tensor的shape为[batch_size, max_time, depth]。实验中使用tf.concat(outputs, 2)将其拼接。
2. output_states为(output_state_fw, output_state_bw),包含了前向和后向最后的隐藏状态的组成的元组。
output_state_fw和output_state_bw的类型为LSTMStateTuple。
LSTMStateTuple由(c,h)组成,分别代表memory cell和hidden state。