配置环境
有 8 G 显存即可
conda create -n opencompass python=3.8
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y
cd ~
conda activate opencompass
git clone -b 0.2.4 https://github.com/open-compass/opencompass
cd opencompass
pip install -e .
apt-get update
apt-get install cmake
pip install -r requirements.txt
pip install protobuf
准备数据
解压评测数据集到 data/ 处
cp /share/temp/datasets/OpenCompassData-core-20231110.zip /root/opencompass/
unzip OpenCompassData-core-20231110.zip
InternLM和ceval 相关的配置文件
进入 opencompass 文件夹,使用下面的命令列出所有跟 InternLM 及 C-Eval 相关的配置
python tools/list_configs.py internlm ceval
打开 opencompass文件夹下configs/models/hf_internlm/的hf_internlm2_chat_1_8b.py ,贴入以下代码
from opencompass.models import HuggingFaceCausalLM
models = [
dict(
type=HuggingFaceCausalLM,
abbr='internlm2-1.8b-hf',
path="/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b",
tokenizer_path='/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b',
model_kwargs=dict(
trust_remote_code=True,
device_map='auto',
),
tokenizer_kwargs=dict(
padding_side='left',
truncation_side='left',
use_fast=False,
trust_remote_code=True,
),
max_out_len=100,
min_out_len=1,
max_seq_len=2048,
batch_size=8,
run_cfg=dict(num_gpus=1, num_procs=1),
)
]
运行代码,进行评测,中间可能会出现缺少某些库,直接 pip 安装即可
python run.py
--datasets ceval_gen \ # 数据集准备
--models hf_internlm2_chat_1_8b \ # 模型准备
--debug
结果