稳态视觉诱发电位 (SSVEP) 分类学习系列 (4) :Temporal-Spatial Transformer

48 篇文章 ¥159.90 ¥299.90
本文提出了一种基于transformer的脑机接口(BCI)分类方法,利用时空自注意力机制处理稳态视觉诱发电位(SSVEP)数据。通过引入位置编码,模型能更好地捕捉EEG信号的时空特征,提升分类准确性。在2a和2b数据集上的实验表明,提出的模型表现优秀,并通过消融实验验证了各个组件的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文地址:https://www.sciencedirect.com/science/article/abs/pii/S1746809423007929
论文题目:Temporal–spatial transformer based motor imagery classification for BCI using independent component analysis
论文代码:暂无

0. 引言

脑电图数据的复杂性可变性低信噪比在解码这些信号方面提出了重大挑战,尤其是在以与受试者无关的方式解码时。为了克服这些挑战,我们提出了一种基于transformer的方法,该方法采用自注意力过程来提取时间和空间域中的特征。为了在 MI EEG 通道之间建立空间相关性,自注意力模块通过平均所有通道的特征来定期更新每个通道。这种加权平均可提高分类准确性,并消除手动选择通道产生的伪影。此外,时间自注意力机制全局顺序信息编码到每个

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sjx_alo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值