浅析希尔排序

希尔排序(Shellsort)又叫做缩小增量排序(diminishing increment sort)。

希尔排序使用一个序列h1,h2,h3,....hn,叫做增量序列。只要h1=1,任何增量序列都是可行的,不过,有些增量序列比另外一些增量序列更好。在使用增量hk的一趟排序之后,对于每一个i我们有A[i]<=A[i+hk];所有相隔hk的元素被排序。此时称文件hk-排序。

初始               81 94 11 96 12 35 17 95 28 58 41 75 15

在5-排序后     35 17 11 28 12 41 75 15 96 58 81 94 95(每五个一分组然后我们对每列进行排序

在3-排序后     28 12 11 35 15 41 58 17 94 75 81 96 95(然后每三个一分组并对列进行排序)

在1-排序后     11 12 15 17 28 35 41 58 75 81 94 95 96(进行插入排序)

希尔排序每趟之后的情况


//**以下内容来自维基百科*//

希尔排序通过将比较的全部元素分为几个区域来提升插入排序的性能。这样可以让一个元素可以一次性地朝最终位置前进一大步。然后算法再取越来越小的步长进行排序,算法的最后一步就是普通的插入排序,但是到了这步,需排序的数据几乎是已排好的了(此时插入排序较快)。

假设有一个很小的数据在一个已按升序排好序的数组的末端。如果用复杂度为O(n2)的排序(冒泡排序插入排序),可能会进行n次的比较和交换才能将该数据移至正确位置。而希尔排序会用较大的步长移动数据,所以小数据只需进行少数比较和交换即可到正确位置。


步长序列

步长的选择是希尔排序的重要部分。只要最终步长为1任何步长序列都可以工作。算法最开始以一定的步长进行排序。然后会继续以一定步长进行排序,最终算法以步长为1进行排序。当步长为1时,算法变为插入排序,这就保证了数据一定会被排序。

Donald Shell最初建议步长选择为{\displaystyle {\frac {n}{2}}}\frac{n}{2}并且对步长取半直到步长达到1。虽然这样取可以比{\displaystyle {\mathcal {O}}(n^{2})}{\mathcal {O}}(n^{2})类的算法(插入排序)更好,但这样仍然有减少平均时间和最差时间的余地。可能希尔排序最重要的地方在于当用较小步长排序后,以前用的较大步长仍然是有序的。比如,如果一个数列以步长5进行了排序然后再以步长3进行排序,那么该数列不仅是以步长3有序,而且是以步长5有序。如果不是这样,那么算法在迭代过程中会打乱以前的顺序,那就不会以如此短的时间完成排序了。

步长序列 最坏情况下复杂度
{\displaystyle {n/2^{i}}}{n/2^i}{\displaystyle {\mathcal {O}}}\mathcal{O}{\displaystyle (n^{2})}(n^2)
{\displaystyle 2^{k}-1}2^k - 1{\displaystyle {\mathcal {O}}}\mathcal{O}{\displaystyle (n^{3/2})}(n^{3/2})
{\displaystyle 2^{i}3^{j}}2^i 3^j{\displaystyle {\mathcal {O}}}\mathcal{O}{\displaystyle (n\log ^{2}n)}( n\log^2 n )
已知的最好步长序列是由Sedgewick提出的(1, 5, 19, 41, 109,...),该序列的项来自{\displaystyle 9\times 4^{i}-9\times 2^{i}+1}9\times 4^{i}-9\times 2^{i}+1{\displaystyle 2^{i+2}\times (2^{i+2}-3)+1}

2^{​{i+2}}\times (2^{​{i+2}}-3)+1这两个算式[1]。这项研究也表明“比较在希尔排序中是最主要的操作,而不是交换。”用这样步长序列的希尔排序比插入排序要快,甚至在小数组中比快速排序堆排序还快,但是在涉及大量数据时希尔排序还是比快速排序慢

void shell_sort(int arr[], int len) {
	int gap, i, j;
	int temp;
	for (gap = len >> 1; gap > 0; gap >>= 1)
		for (i = gap; i < len; i++) {
			temp = arr[i];
			for (j = i - gap; j >= 0 && arr[j] > temp; j -= gap)
				arr[j + gap] = arr[j];
			arr[j + gap] = temp;
		}
}

(此处摘自维基百科)

1. 用户与身体信息管理模块 用户信息管理: 注册登录:支持手机号 / 邮箱注册,密码加密存储,提供第三方快捷登录(模拟) 个人资料:记录基本信息(姓名、年龄、性别、身高、体重、职业) 健康目标:用户设置目标(如 “减重 5kg”“增肌”“维持健康”)及期望周期 身体状态跟踪: 体重记录:定期录入体重数据,生成体重变化曲线(折线图) 身体指标:记录 BMI(自动计算)、体脂率(可选)、基础代谢率(根据身高体重估算) 健康状况:用户可填写特殊情况(如糖尿病、过敏食物、素食偏好),系统据此调整推荐 2. 膳食记录与食物数据库模块 食物数据库: 基础信息:包含常见食物(如米饭、鸡蛋、牛肉)的名称、类别(主食 / 肉类 / 蔬菜等)、每份重量 营养成分:记录每 100g 食物的热量(kcal)、蛋白质、脂肪、碳水化合物、维生素、矿物质含量 数据库维护:管理员可添加新食物、更新营养数据,支持按名称 / 类别检索 膳食记录功能: 快速记录:用户选择食物、输入食用量(克 / 份),系统自动计算摄入的营养成分 餐次分类:按早餐 / 午餐 / 晚餐 / 加餐分类记录,支持上传餐食照片(可选) 批量操作:提供常见套餐模板(如 “三明治 + 牛奶”),一键添加到记录 历史记录:按日期查看过往膳食记录,支持编辑 / 删除错误记录 3. 营养分析模块 每日营养摄入分析: 核心指标计算:统计当日摄入的总热量、蛋白质 / 脂肪 / 碳水化合物占比(按每日推荐量对比) 微量营养素分析:检查维生素(如维生素 C、钙、铁)的摄入是否达标 平衡评估:生成 “营养平衡度” 评分(0-100 分),指出摄入过剩或不足的营养素 趋势分析: 周 / 月营养趋势:用折线图展示近 7 天 / 30 天的热量、三大营养素摄入变化 对比分析:将实际摄入与推荐量对比(如 “蛋白质摄入仅达到推荐量的 70%”) 目标达成率:针对健
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值