在「并查集」数据结构中,其中心思想是将所有连接的顶点,无论是直接连接还是间接连接,都将他们指向同一个父节点或者根节点。此时,如果要判断两个顶点是否具有连通性,只要判断它们的根节点是否为同一个节点即可。
在「并查集」数据结构中,它的两个灵魂函数,分别是 find和 union。find 函数是为了找出给定顶点的根节点。 union 函数是通过更改顶点根节点的方式,将两个原本不相连接的顶点表示为两个连接的顶点。对于「并查集」来说,它还有一个重要的功能性函数 connected。它最主要的作用就是检查两个顶点的「连通性」。find 和 union 函数是「并查集」中必不可少的函数。connected 函数则需要根据题目的意思来决定是否需要。
并查集的基本结构:
public class UnionFind {
// UnionFind 的构造函数,size 为 root 数组的长度
public UnionFind(int size) {}
public int find(int x) {}
public void union(int x, int y) {}
public boolean connected(int x, int y) {}
}
基于路径压缩的按秩合并优化的「并查集」:
// UnionFind.class
public class UnionFind {
int root[];
// 添加了 rank 数组来记录每个顶点的高度,也就是每个顶点的「秩」
int rank[];
public UnionFind(int size) {
root = new int[size];
rank = new int[size];
for (int i = 0; i < size; i++) {
root[i] = i;
rank[i] = 1; // 一开始每个顶点的初始「秩」为1,因为它们只有自己本身的一个顶点。
}
}
// 此处的 find 函数与路径压优化缩版本的 find 函数一样。
public int find(int x) {
if (x == root[x]) {
return x;
}
return root[x] = find(root[x]);
}
// 按秩合并优化的 union 函数
public void union(int x, int y) {
int rootX = find(x);
int rootY = find(y);
if (rootX != rootY) {
if (rank[rootX] > rank[rootY]) {
root[rootY] = rootX;
} else if (rank[rootX] < rank[rootY]) {
root[rootX] = rootY;
} else {
root[rootY] = rootX;
rank[rootX] += 1;
}
}
};
public boolean connected(int x, int y) {
return find(x) == find(y);
}
}
// App.java
// 测试样例
public class App {
public static void main(String[] args) throws Exception {
UnionFind uf = new UnionFind(10);
// 1-2-5-6-7 3-8-9 4
uf.union(1, 2);
uf.union(2, 5);
uf.union(5, 6);
uf.union(6, 7);
uf.union(3, 8);
uf.union(8, 9);
System.out.println(uf.connected(1, 5)); // true
System.out.println(uf.connected(5, 7)); // true
System.out.println(uf.connected(4, 9)); // false
// 1-2-5-6-7 3-8-9-4
uf.union(9, 4);
System.out.println(uf.connected(4, 9)); // true
}
}