理解机器学习和深度学习的基本概念

本文介绍了机器学习的基本概念,探讨了其在图像识别等领域的应用挑战,并深入解析了深度学习作为机器学习分支如何通过自动特征学习提高算法效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

什么是机器学习

机器学习(Machine Learning)是一门专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能的学科。
机器学习虽然发展了几十年,但还是存在很多没有解决的问题:
例如图像识别、语音识别、自然语言理解、天气预测、基因表达、内容推荐等等。目前我们通过机器学习去解决这些问题的思路都是这样的(以视觉感知为例子):
从开始的通过传感器(例如CMOS)来获得数据。然后经过预处理、特征提取、特征选择,再到推理、预测或者识别。最后一个部分,也就是机器学习的部分,绝大部分的工作是在这方面做的,也存在很多的paper和研究。

而中间的三部分,概括起来就是特征表达。良好的特征表达,对最终算法的准确性起了非常关键的作用,而且系统主要的计算和测试工作都耗在这一大部分。但这块实际中一般都是人工完成的。靠人工提取特征。
然而,手工地选取特征是一件非常费力、启发式(需要专业知识)的方法,能不能选取好很大程度上靠经验和运气,而且它的调节需要大量的时间。既然手工选取特征不太好,那么能不能自动地学习一些特征呢?答案是能!Deep Learning就是用来干这个事情的,看它的一个别名UnsupervisedFeature Learning,就可以顾名思义了,Unsupervised的意思就是不要人参与特征的选取过程。

什么是深度学习

深度学习是机器学习的一个分支,尝试自动的学习合适的特征及其表征,尝试学习多层次的表征以及输出。
深度学习是机器学习的一个分支
大多数机器学习方法很有效主要依靠人工精心设计的特征,例如下表是一个命名实体识别任务中设计的特征模板(Finkel, 2010)
这里写图片描述

表示学习 or 表达学习(Representation Learning)尝试自动的学习合适的特征及其表征
深度学习(Deep Learning) 算法尝试学习(多层次)的表征以及输出
从一个“原生”的输入x(例如“单词”)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值