深度学习 <实战Kaggle比赛:预测房价> 代码分析 跟李沐学AI

本文介绍了如何利用深度学习预测房价,首先进行数据处理,包括下载、解压、读取CSV文件,并对数值特征进行标准化和处理缺失值。然后,通过`pd.get_dummies()`将类别特征转换为数值。接着,使用单层线性模型,定义均方误差损失函数,并采用Adam优化器进行训练。文章还涉及了K折交叉验证来评估模型性能。

4.10. 实战Kaggle比赛:预测房价 — 动手学深度学习 2.0.0 documentation

若有错误请指出

一.数据处理部分

1.下载部分 没啥好说的 

import hashlib
import os
import tarfile
import zipfile
import requests

#@save
DATA_HUB = dict()
DATA_URL = 'http://d2l-data.s3-accelerate.amazonaws.com/'

def download(name, cache_dir=os.path.join('..', 'data')):  #@save
    """下载一个DATA_HUB中的文件,返回本地文件名"""
    assert name in DATA_HUB, f"{name} 不存在于 {DATA_HUB}"
    url, sha1_hash = DATA_HUB[name]
    os.makedirs(cache_dir, exist_ok=True)
    fname = os.path.join(cache_dir, url.split('/')[-1])
    if os.path.exists(fname):
        sha1 = hashlib.sha1()
        with open(fname, 'rb') as f:
            while True:
                data = f.read(1048576)
                if not data:
                    break
                sha1.update(data)
        if sha1.hexdigest() == sha1_hash:
            return fname  # 命中缓存
    print(f'正在从{url}下载{fname}...')
    r = requests.get(url, stream=True, verify=True)
    with open(fname, 'wb') as f:
        f.write(r.content)
    return fname


def download_extract(name, folder=None):  #@save
    """下载并解压zip/tar文件"""
    fname = download(name)
    base_dir = os.path.dirname(fname)
    data_dir, ext = os.path.splitext(fname)
    if ext == '.zip':
        fp = zipfile.ZipFile(fname, 'r')
    elif ext in ('.tar', '.gz'):
        fp = tarfile.open(fname, 'r')
    else:
        assert False, '只有zip/tar文件可以被解压缩'
    fp.extractall(base_dir)
    return os.path.join(base_dir, folder) if folder else data_dir

def download_all():  #@save
    """下载DATA_HUB中的所有文件"""
    for name in DATA_HUB:
        download(name)

2.还是下载部分跟导包 也跳过

# 如果没有安装pandas,请取消下一行的注释
# !pip install pandas

%matplotlib inline
import numpy as np
import pandas as pd
import torch
from torch import nn
from d2l import torch as d2l

DATA_HUB['kaggle_house_train'] = (  #@save
    DATA_URL + 'kaggle_house_pred_train.csv',
    '585e9cc93e70b39160e7921475f9bcd7d31219ce')

DATA_HUB['kaggle_house_test'] = (  #@save
    DATA_URL + 'kaggle_house_pred_test.csv',
    'fa19780a7b011d9b009e8bff8e99922a8ee2eb90')

3.读表

train_data = pd.read_csv(download('kaggle_house_train'))
test_data = pd.read_csv(download('kaggle_house_test'))#读表 

print(train_data.shape)
print(test_data.shape)

#形状是这样的
(1460, 81)
(1459, 80)

4.初步看看样本

print(train_data.iloc[0:4, [0, 1, 2, 3, -3, -2, -1]])


'''  注意第一行id对于训练没用 最后一行-1 是SalePrice 训练属于label(y)的部分 需要抽走
Id  MSSubClass MSZoning  LotFrontage SaleType SaleCondition  SalePrice
0   1          60       RL         65.0       WD        Normal     208500
1   2          20       RL         80.0       WD        Normal     181500
2   3          60       RL         68.0       WD        Normal     223500
3   4          70      
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值