Helen works in Metropolis airport. She is responsible for creating a departure schedule. There are nflights that must depart today, the i-th of them is planned to depart at the i-th minute of the day.
Metropolis airport is the main transport hub of Metropolia, so it is difficult to keep the schedule intact. This is exactly the case today: because of technical issues, no flights were able to depart during the first kminutes of the day, so now the new departure schedule must be created.
All n scheduled flights must now depart at different minutes between (k + 1)-th and (k + n)-th, inclusive. However, it's not mandatory for the flights to depart in the same order they were initially scheduled to do so — their order in the new schedule can be different. There is only one restriction: no flight is allowed to depart earlier than it was supposed to depart in the initial schedule.
Helen knows that each minute of delay of the i-th flight costs airport ci burles. Help her find the order for flights to depart in the new schedule that minimizes the total cost for the airport.
The first line contains two integers n and k (1 ≤ k ≤ n ≤ 300 000), here n is the number of flights, and kis the number of minutes in the beginning of the day that the flights did not depart.
The second line contains n integers c1, c2, ..., cn (1 ≤ ci ≤ 107), here ci is the cost of delaying the i-th flight for one minute.
The first line must contain the minimum possible total cost of delaying the flights.
The second line must contain n different integers t1, t2, ..., tn (k + 1 ≤ ti ≤ k + n), here ti is the minute when the i-th flight must depart. If there are several optimal schedules, print any of them.
5 2 4 2 1 10 2
20 3 6 7 4 5
Let us consider sample test. If Helen just moves all flights 2 minutes later preserving the order, the total cost of delaying the flights would be (3 - 1)·4 + (4 - 2)·2 + (5 - 3)·1 + (6 - 4)·10 + (7 - 5)·2 = 38burles.
However, the better schedule is shown in the sample answer, its cost is (3 - 1)·4 + (6 - 2)·2 + (7 - 3)·1 + (4 - 4)·10 + (5 - 5)·2 = 20 burles.
题意:
|
|
|
|
|
用一个优先队列贪心一下。
//china no.1
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <vector>
#include <iostream>
#include <string>
#include <map>
#include <stack>
#include <cstring>
#include <queue>
#include <list>
#include <stdio.h>
#include <set>
#include <algorithm>
#include <cstdlib>
#include <cmath>
#include <iomanip>
#include <cctype>
#include <sstream>
#include <functional>
#include <stdlib.h>
#include <time.h>
#include <bitset>
using namespace std;
#define pi acos(-1)
#define s_1(x) scanf("%d",&x)
#define s_2(x,y) scanf("%d%d",&x,&y)
#define s_3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define PI acos(-1)
#define endl '\n'
#define srand() srand(time(0));
#define me(x,y) memset(x,y,sizeof(x));
#define foreach(it,a) for(__typeof((a).begin()) it=(a).begin();it!=(a).end();it++)
#define close() ios::sync_with_stdio(0); cin.tie(0);
#define FOR(x,n,i) for(int i=x;i<=n;i++)
#define FOr(x,n,i) for(int i=x;i<n;i++)
#define fOR(n,x,i) for(int i=n;i>=x;i--)
#define fOr(n,x,i) for(int i=n;i>x;i--)
#define W while
#define sgn(x) ((x) < 0 ? -1 : (x) > 0)
#define bug printf("***********\n");
#define db double
#define ll long long
#define mp make_pair
#define pb push_back
typedef pair<long long int,long long int> ii;
typedef long long LL;
const int INF=0x3f3f3f3f;
const LL LINF=0x3f3f3f3f3f3f3f3fLL;
const int dx[]={-1,0,1,0,1,-1,-1,1};
const int dy[]={0,1,0,-1,-1,1,-1,1};
const int maxn=1e3+10;
const int maxx=600005;
const double EPS=1e-8;
const double eps=1e-8;
const int mod=1e9+7;
template<class T>inline T min(T a,T b,T c) { return min(min(a,b),c);}
template<class T>inline T max(T a,T b,T c) { return max(max(a,b),c);}
template<class T>inline T min(T a,T b,T c,T d) { return min(min(a,b),min(c,d));}
template<class T>inline T max(T a,T b,T c,T d) { return max(max(a,b),max(c,d));}
template <class T>
inline bool scan_d(T &ret){char c;int sgn;if (c = getchar(), c == EOF){return 0;}
while (c != '-' && (c < '0' || c > '9')){c = getchar();}sgn = (c == '-') ? -1 : 1;ret = (c == '-') ? 0 : (c - '0');
while (c = getchar(), c >= '0' && c <= '9'){ret = ret * 10 + (c - '0');}ret *= sgn;return 1;}
inline bool scan_lf(double &num){char in;double Dec=0.1;bool IsN=false,IsD=false;in=getchar();if(in==EOF) return false;
while(in!='-'&&in!='.'&&(in<'0'||in>'9'))in=getchar();if(in=='-'){IsN=true;num=0;}else if(in=='.'){IsD=true;num=0;}
else num=in-'0';if(!IsD){while(in=getchar(),in>='0'&&in<='9'){num*=10;num+=in-'0';}}
if(in!='.'){if(IsN) num=-num;return true;}else{while(in=getchar(),in>='0'&&in<='9'){num+=Dec*(in-'0');Dec*=0.1;}}
if(IsN) num=-num;return true;}
void Out(LL a){if(a < 0) { putchar('-'); a = -a; }if(a >= 10) Out(a / 10);putchar(a % 10 + '0');}
void print(LL a){ Out(a),puts("");}
//freopen( "in.txt" , "r" , stdin );
//freopen( "data.txt" , "w" , stdout );
//cerr << "run time is " << clock() << endl;
int n,k;
int ar[maxx],a[maxx];
priority_queue<ii> p;
int main()
{
s_2(n,k);
FOR(1,n,i)
scan_d(a[i]);
for(int i=1;i<=k;i++)
p.push(ii(a[i],i));
LL ans=0;
for(int i=k+1;i<=n+k;i++)
{
p.push(ii(a[i],i));
ii q=p.top();
//cout<<q.first<<" "<<q.second<<endl;
p.pop();
ans+=(i-q.second)*q.first;
ar[q.second]=i;
}
print(ans);
FOR(1,n,i)
{
if(i==1)
printf("%d",ar[i]);
else printf(" %d",ar[i]);
}
return 0;
}