leetcode|继续买股票?

今天是 Kevin 的算法之路的第 17 天。为大家讲解 LeetCode 第 122 题,继续为大家带来「买卖股票」系列的一个提升版《买卖股票的最佳时机 II》。

已经写了两篇,建议不了解的朋友先去看看~

leetcode|割韭菜的最佳时机

leetcode|割冷冻韭菜的最佳时机

每日一笑

深思熟虑:什么事情都决定不了。

抱着‘老子不管了’的心态:能决定任何大事。

题目描述

给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

输入: [7,1,5,3,6,4]
输出: 7
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。
示例 2:

输入: [1,2,3,4,5]
输出: 4
解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。
因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
示例 3:

输入: [7,6,4,3,1]
输出: 0
解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock-ii
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

解题思路

这题的要求其实并不多,没有冻结期,只要求不能同时参与多笔交易,多次购买的最大利润。

这道题有其他方法可以解决,但我仍然选择使用「动态规划」,继续加强大家对此算法的理解。

另外,关于动态规划可以看我今天分享的小浩算法的那篇文章。

同样的,第一步:定义状态

状态 dp[i][j] 定义如下

第一维 i 表示索引为i的那一天(具有前缀性质,即考虑了之前天数的收益)能获得的最大利润;
第二维 j表示索引为i 的那一天是未持有股票,还是持有股票。这里 0 表示未持有股票,1 表示持有股票。

第二步:状态转移方程
  • 状态从未持有股票开始,到最后一天我们关心的状态依然是未持有股票;
  • 每一天状态可以转移,也可以不动。
第三步:初始化(base case)
  • 如果什么都不做,dp[0][0] = 0
  • 如果买入股票,当前收益是负数,即 dp[0][1] = -prices[i]
第四步:返回值

终止的时候,输出 dp[len - 1][0],因为一定有 dp[len - 1][0](卖了未持股) > dp[len - 1][1](持股)

代码实现

//go
func maxProfit(prices []int) int {
    length := len(prices)
    if length < 2 {
        return 0
    }
    dp := make([][2]int, length)

    dp[0][0] = 0
    dp[0][1] = -prices[0]

    for i := 1; i < length; i++ {
        dp[i][0] = max(dp[i-1][0], dp[i-1][1]+prices[i])
        dp[i][1] = max(dp[i-1][1], dp[i-1][0]-prices[i])
    }

    return dp[length-1][0]

}

func max(x, y int) int {
    if x > y {
        return x
    }
    return y
}
//java
public class Solution {

    public int maxProfit(int[] prices) {
        int len = prices.length;
        if (len < 2) {
            return 0;
        }

        // 0:未持有股票
        // 1:持有股票
        int[][] dp = new int[len][2];

        dp[0][0] = 0;
        dp[0][1] = -prices[0];

        for (int i = 1; i < len; i++) {
            // 这两行调换顺序也是可以的
            dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] + prices[i]);
            dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
        }
        return dp[len - 1][0];
    }
}

郑重声明:

所展示代码已通过 LeetCode 运行通过,请放心食用~

在唠唠嗑

很多人都想养成好习惯,但大多数人却是三分钟热度。为了我们能一起坚持下去,决定制定如下计划(福利)

一起学算法,打卡领红包!

参与方式:

关注我的微信公众号「Kevin的学堂」

还可「加群」与众多小伙伴

一起坚持,一起学习,一起更优秀!

打卡规则为:

「留言」“打卡XXX天” ➕「分享」到朋友圈

奖励:

连续打卡 21 天,联系本人获取 6.6 元红包一个!

连续打卡 52 天,联系本人获取 16.6 元红包一个!

连续打卡 100 天,联系本人获取 66.6 元红包一个!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值