排序大的分类可以分为两种:内排序和外排序。
内排序:在排序过程中,所有元素调到内存中进行的排序,称为内排序。内排序是排序的基础。内排序效率用比较次数来衡量。按所用策略不同,内排序又可分为插入排序、选择排序、交换排序、归并排序及基数排序等几大类。
外排序:在数据量大的情况下,只能分块排序,但块与块间不能保证有序。外排序用读/写外存的次数来衡量其效率。
简单地说,在排序过程中,全部记录存放在内存,则称为内排序,如果排序过程中需要使用外存,则称为外排序。下面讲的排序都是属于内排序。
内排序有可以分为以下几类:
(1)、插入排序:直接插入排序、希尔排序。
(2)、选择排序:简单选择排序、堆排序。
(3)、交换排序:冒泡排序、快速排序*。
(4)、归并排序*
(5)、基数排序
常用排序算法的性能分析:
总结:
(1)稳定性:
稳定:冒泡排序、插入排序、归并排序和基数排序
不稳定:选择排序、快速排序、希尔排序、堆排序
(2)平均时间复杂度
O(n^2):直接插入排序,简单选择排序,冒泡排序。
在数据规模较小时(9W内),直接插入排序,简单选择排序差不多。当数据较大时,冒泡排序算法的时间代价最高。性能为O(n^2)的算法基本上是相邻元素进行比较,基本上都是稳定的。
O(nlogn):快速排序,归并排序,希尔排序,堆排序。
其中,快排是最好的, 其次是归并和希尔,堆排序在数据量很大时效果明显。
(3)排序算法的选择
(3.1)数据规模较小
待排序列基本序的情况下,可以选择直接插入排序;
对稳定性不作要求宜用简单选择排序,对稳定性有要求宜用插入或冒泡
(3.2)数据规模不是很大
完全可以用内存空间,序列杂乱无序,对稳定性没有要求,快速排序,此时要付出log(N)的额外空间。
序列本身可能有序,对稳定性有要求,空间允许下,宜用归并排序
(3.3)数据规模很大
对稳定性有求,则可考虑归并排序。
对稳定性没要求,宜用堆排序
(3.4)序列初始基本有序(正序),宜用直接插入,冒泡
(4)各种排序算法稳定性分析
排序算法的稳定性大家应该都知道,通俗地讲就是能保证排序前两个相等的数据其在序列中的先后位置顺序与排序后它们两个先后位置顺序相同。再简单具体一点,如果A i == A j,Ai 原来在 Aj位置前,排序后 Ai 仍然是在 Aj 位置前。现在分析一下常见的排序算法的稳定性,每个都给出简单的理由。
(4.1)插入排序
插入排序是在一个已经有序的小序列的基础上,一次插入一个元素。当然,刚开始这个有序的小序列只有1个元素,也就是第一个元素(默认它有序)。比较是从有序序列的末尾开始,也就是把待插入的元素和已经有序的最大者开始比起,如果比它大则直接插入在其后面。否则一直往前找直到找到它该插入的位置。如果遇见一个与插入元素相等的,那么把待插入的元素放在相等元素的后面。所以,相等元素的前后顺序没有改变,从原无序序列出去的顺序仍是排好序后的顺序,所以插入排序是稳定的。
(4.2)希尔排序
希尔排序是按照不同步长对元素进行插入排序,当刚开始元素很无序的时候,步长最大,所以插入排序的元素个数很少,速度很快;当元素基本有序时,步长很小,插入排序对于有序的序列效率很高。所以,希尔排序的时间复杂度会比O(N^2)好一些。由于多次插入排序,我们知道一次插入排序是稳定的,不会改变相同元素的相对顺序,但在不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,最后其稳定性就会被打乱。所以shell排序是不稳定的排序算法。
(4.3)选择排序
选择排序即是给每个位置选择待排序元素中当前最小的元素。比如给第一个位置选择最小的,在剩余元素里面给第二个位置选择次小的,依次类推,直到第n-1个元素,第n个元素不用选择了,因为只剩下它一个最大的元素了。那么,在一趟选择时,如果当前锁定元素比后面一个元素大,而后面较小的那个元素又出现在一个与当前锁定元素相等的元素后面,那么交换后位置顺序显然改变了。呵呵!比较拗口,举个例子:序列5 8 5 2 9, 我们知道第一趟选择第1个元素5会与2进行交换,那么原序列中两个5的相对先后顺序也就被破坏了。所以选择排序不是一个稳定的排序算法。
(4.4)堆排序
我们知道堆的结构是节点i的孩子为2*i和2*i+1节点,大顶堆要求父节点大于等于其2个子节点,小顶堆要求父节点小于等于其2个子节点。在一个长为n的序列,堆排序的过程是从第n/2开始和其子节点共3个值选择最大(大顶堆)或者最小(小顶堆),这3个元素之间的选择当然不会破坏稳定性。但当为n/2-1, n/2-2, ...1这些个父节点选择元素时,就会破坏稳定性。有可能第n/2个父节点交换把后面一个元素交换过去了,而第n/2-1个父节点把后面一个相同的元素没有交换,那么这2个相同的元素之间的稳定性就被破坏了。所以,堆排序不是稳定的排序算法。
(4.5)冒泡排序
冒泡排序就是把小的元素往前调(或者把大的元素往后调)。注意是相邻的两个元素进行比较,而且是否需要交换也发生在这两个元素之间。所以,如果两个元素相等,我想你是不会再无聊地把它们俩再交换一下。如果两个相等的元素没有相邻,那么即使通过前面的两两交换把两个元素相邻起来,最终也不会交换它俩的位置,所以相同元素经过排序后顺序并没有改变。所以冒泡排序是一种稳定排序算法。
(4.6)快速排序
快速排序有两个方向,左边的i下标一直往右走(当条件a[i] <= a[center_index]时),其中center_index是中枢元素的数组下标,一般取为数组第0个元素。而右边的j下标一直往左走(当a[j] > a[center_index]时)。如果i和j都走不动了,i <= j, 交换a[i]和a[j],重复上面的过程,直到i>j。交换a[j]和a[center_index],完成一趟快速排序。在中枢元素和a[j]交换的时候,很有可能把前面的元素的稳定性打乱,比如序列为 5 3 3 4 3 89 10 11 。现在中枢元素5和3(第5个元素,下标从1开始计)交换就会把元素3的稳定性打乱。所以快速排序是一个不稳定的排序算法,不稳定发生在中枢元素和a[j]交换的时刻。
(4.7)归并排序
归并排序是把序列递归地分成短序列,递归出口是短序列只有1个元素(认为直接有序)或者2个序列(1次比较和交换),然后把各个有序的段序列合并成一个有序的长序列,不断合并直到原序列全部排好序。可以发现,在1个或2个元素时,1个元素不会交换,2个元素如果大小相等也没有人故意交换,这不会破坏稳定性。那么,在短的有序序列合并的过程中,稳定是是否受到破坏?没有,合并过程中我们可以保证如果两个当前元素相等时,我们把处在前面的序列的元素保存在结果序列的前面,这样就保证了稳定性。所以,归并排序也是稳定的排序算法。
(4.8)基数排序
基数排序是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,直到最高位。有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优先级排序,最后的次序结果就是高优先级高的在前,高优先级相同的情况下低优先级高的在前。基数排序基于分别排序,分别收集,所以其是稳定的排序算法。
一、直接插入排序
基本思想:
将一个记录插入到已排序好的有序表中,从而得到一个新,记录数增1的有序表。即:先将序列的第1个记录看成是一个有序的子序列,然后从第2个记录逐个进行插入,直至整个序列有序为止。
要点:设立哨兵,作为临时存储和判断数组边界之用。
性能分析:
如果碰见一个和插入元素相等的,那么插入元素把想插入的元素放在相等元素的后面。所以,相等元素的前后顺序没有改变,从原无序序列出去的顺序就是排好序后的顺序,所以插入排序是稳定的。
文件初态不同时,直接插入排序所耗费的时间有很大差异。若文件初态为正序,则每个待插入的记录只需要比较一次就能够找到合适的位置插入,故算法的时间复杂度为O(n),这时最好的情况。若初态为反序,则第i个待插入记录需要比较i+1次才能找到合适位置插入,故时间复杂度为O(n2),这时最坏的情况。
直接插入排序的平均时间复杂度为O(n2)。
java源码:
package sort_algorithm;
public class InsertionSort {
public static void main(String[] args) {
int[] a={49,38,65,97,76,13,27,49,78,34,12,64,1};
//直接插入排序
for (int i = 1; i < a.length; i++) {
//待插入元素
int temp = a[i];
int j; //
for (j = i-1; j>=0; j--) {
//将大于temp的往后移动一位
if(a[j]>temp){
a[j+1] = a[j];
}else{
//下标j 停止于第一个比temp小的元素
break;
}
}
a[j+1] = temp;
}
System.out.println("排序之后:");
for (int i = 0; i < a.length; i++) {
System.out.print(a[i]+" ");
}
}
}
二、希尔排序(Shell Sort /最小增量排序)
基本思想:
算法先将要排序的一组数按某个增量d(n/2,n为要排序数的个数)分成若干组,每组中记录的下标相差d.对每组中全部元素进行直接插入排序,然后再用一个较小的增量(d/2)对它进行分组,在每组中再进行直接插入排序。当增量减到1时,进行直接插入排序后,排序完成。
希尔排序示例:
性能分析:
我们知道一次插入排序是稳定的,但在不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,最后其稳定性就会被打乱,所以希尔排序是不稳定的。
希尔排序的时间性能优于直接插入排序,原因如下:
(1)当文件初态基本有序时直接插入排序所需的比较和移动次数均较少。
(2)当n值较小时,n和n2的差别也较小,即直接插入排序的最好时间复杂度O(n)和最坏时间复杂度0(n2)差别不大。
(3)在希尔排序开始时增量较大,分组较多,每组的记录数目少,故各组内直接插入较快,后来增量di逐渐缩小,分组数逐渐减少,而各组的记录数目逐渐增多,但由于已经按di-1作为距离排过序,使文件较接近于有序状态,所以新的一趟排序过程也较快。
因此,希尔排序在效率上较直接插人排序有较大的改进。
希尔排序的平均时间复杂度为O(nlogn)。
java源码:
package sort_algorithm;
public class ShellSort {
public static void main(String[] args) {
int a[]={1,54,6,3,78,34,12,45,56,100};
double d1=a.length;
int temp=0;
while(true){
d1= Math.ceil(d1/2);
int d=(int) d1;
for(int x=0;x<d;x++){
for(int i=x+d;i<a.length;i+=d){
int j=i-d;
temp=a[i];
for(;j>=0&&temp<a[j];j-=d){
a[j+d]=a[j];
}
a[j+d]=temp;
}
}
if(d==1)
break;
}
for(int i=0;i<a.length;i++)
System.out.print(" "+a[i]);
}
}
三、简单选择排序(Select Sort)
在要排序的一组数中,选出最小的一个数与第一个位置的数交换;然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止。
基本思想:
在要排序的一组数中,选出最小(或者最大)的一个数与第1个位置的数交换;然后在剩下的数当中再找最小(或者最大)的与第2个位置的数交换,依次类推,直到第n-1个元素(倒数第二个数)和第n个元素(最后一个数)比较为止。
第一趟,从n 个记录中找出关键码最小的记录与第一个记录交换;
第二趟,从第二个记录开始的n-1 个记录中再选出关键码最小的记录与第二个记录交换;
以此类推.....
第i 趟,则从第i 个记录开始的n-i+1个记录中选出关键码最小的记录与第i 个记录交换,直到整个序列按关键码有序。
性能分析:
简单选择排序是不稳定的排序。
时间复杂度:T(n)=O(n2)。
java源码:package sort_algorithm;
public class SelectSort {
public static void main(String[] args) {
int[] a={49,38,65,97,76,13,27,49,78,34,12,64,1,8};
//简单的选择排序
for (int i = 0; i < a.length; i++) {
int min = a[i];
int n=i; //最小数的索引
for(int j=i+1;j<a.length;j++){
if(a[j]<min){ //找出最小的数
min = a[j];
n = j;
}
}
a[n] = a[i];
a[i] = min;
}
System.out.println("排序之后:");
for (int i = 0; i < a.length; i++) {
System.out.print(a[i]+" ");
}
}
}
四、堆排序(Heap Sort)
基本思想:
堆排序是一种树形选择排序,是对直接选择排序的有效改进。
堆的定义下:具有n个元素的序列 (h1,h2,...,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1) (i=1,2,...,n/2)时称之为堆。在这里只讨论满足前者条件的堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项(大顶堆)。完全二叉树可以很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。
思想:初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储序,使之成为一个 堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点的堆,并对 它们作交换,最后得到有n个节点的有序序列。从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。
第一步:建堆
第二步:交换,从堆中踢出最大数。
剩余节点再建堆,再交换踢出最大数
第三步:依次类推:最后堆中剩余的最后两个结点交换,踢出一个,排序完成。
性能分析:
堆排序也是一种不稳定的排序算法。堆排序优于简单选择排序的原因:
直接选择排序中,为了从R[1..n]中选出关键字最小的记录,必须进行n-1次比较,然后在R[2..n]中选出关键字最小的记录,又需要做n-2次比较。事实上,后面的n-2次比较中,有许多比较可能在前面的n-1次比较中已经做过,但由于前一趟排序时未保留这些比较结果,所以后一趟排序时又重复执行了这些比较操作。
堆排序可通过树形结构保存部分比较结果,可减少比较次数。
堆排序的最坏时间复杂度为O(nlogn)。堆序的平均性能较接近于最坏性能。由于建初始堆所需的比较次数较多,所以堆排序不适宜于记录数较少的文件。
java源码:
package sort_algorithm;
import java.util.Arrays;
public class HeapSort {
public static void main(String[] args) {
int[] a={49,38,65,97,76,13,27,49,78,34,12,64};
int arrayLength=a.length;
//循环建堆
for(int i=0;i<arrayLength-1;i++){
//建堆
buildMaxHeap(a,arrayLength-1-i);
//交换堆顶和最后一个元素
swap(a,0,arrayLength-1-i);
System.out.println(Arrays.toString(a));
}
}
//对data数组从0到lastIndex建大顶堆
public static void buildMaxHeap(int[] data, int lastIndex){
//从lastIndex处节点(最后一个节点)的父节点开始
for(int i=(lastIndex-1)/2;i>=0;i--){
//k保存正在判断的节点
int k=i;
//如果当前k节点的子节点存在
while(k*2+1<=lastIndex){
//k节点的左子节点的索引
int biggerIndex=2*k+1;
//如果biggerIndex小于lastIndex,即biggerIndex+1代表的k节点的右子节点存在
if(biggerIndex<lastIndex){
//若果右子节点的值较大
if(data[biggerIndex]<data[biggerIndex+1]){
//biggerIndex总是记录较大子节点的索引
biggerIndex++;
}
}
//如果k节点的值小于其较大的子节点的值
if(data[k]<data[biggerIndex]){
//交换他们
swap(data,k,biggerIndex);
//将biggerIndex赋予k,开始while循环的下一次循环,重新保证k节点的值大于其左右子节点的值
k=biggerIndex;
}else{
break;
}
}
}
}
//交换
private static void swap(int[] data, int i, int j) {
int tmp=data[i];
data[i]=data[j];
data[j]=tmp;
}
}
五、冒泡排序(Bubble Sort)
基本思想:
在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要求相反时,就将它们互换。
性能分析:
冒泡排序是一种稳定的排序方法。
若文件初状为正序,则一趟起泡就可完成排序,排序码的比较次数为n-1,且没有记录移动,时间复杂度是O(n);若文件初态为逆序,则需要n-1趟起泡,每趟进行n-i次排序码的比较,且每次比较都移动三次,比较和移动次数均达到最大值∶O(n2)。冒泡排序平均时间复杂度为O(n2)
java源码:
package sort_algorithm;
public class BubbleSort {
public static void main(String[] args) {
int[] a={49,38,65,97,76,13,27,49,78,34,12,64,1,8};
System.out.println("排序之前:");
for (int i = 0; i < a.length; i++) {
System.out.print(a[i]+" ");
}
//冒泡排序
for (int i = 0; i < a.length; i++) {
for(int j = 0; j<a.length-i-1; j++){
//这里-i主要是每遍历一次都把最大的i个数沉到最底下去了,没有必要再替换了
if(a[j]>a[j+1]){
int temp = a[j];
a[j] = a[j+1];
a[j+1] = temp;
}
}
}
System.out.println();
System.out.println("排序之后:");
for (int i = 0; i < a.length; i++) {
System.out.print(a[i]+" ");
}
}
}
六、快速排序 (Quick Sort)
基本思想:
首先把数组的第一个数拿出来做为一个key,在前后分别设置一个i,j做为标识,然后拿这个key对这个数组从后面往前遍历,即j--,直到找到第一个小于这个key的那个数,然后交换这两个值,交换完成后,我们拿着这个key要从i往后遍历了,即i++;一直循环到i=j结束,此时,大于这个key的值都会跑到这个key的后面,小于这个key的就会跑到这个值的前面;然后我们对这个分段的数组再时行递归调用就可以完成整个数组的排序。
性能分析:
快速排序是不稳定的排序。
快速排序的时间复杂度为O(nlogn)。当n较大时使用快排比较好,当序列基本有序时用快排反而不好。
java源码:
package sort_algorithm;
public class QuickSort {
/*
* 首先把数组的第一个数拿出来做为一个key,在前后分别设置一个i,j做为标识,
* 然后拿这个key对这个数组从后面往前遍历,即j--,直到找到第一个小于这个key的那个数,
* 然后交换这两个值,交换完成后,我们拿着这个key要从i往后遍历了,即i++;
* 一直循环到i=j结束,此时,大于这个key的值都会跑到这个key的后面,小于这个key的就会跑到这个值的前面;
* 然后我们对这个分段的数组再时行递归调用就可以完成整个数组的排序。
*
* */
public static void main(String[] args) {
int[] arr = {12,20,5,16,15,9,1,30,45,23,9};
int start = 0;
int end = arr.length-1;
sort(arr,start,end);
for(int i = 0; i<arr.length; i++){
System.out.print(arr[i]+" ");
}
}
public static void sort(int[] a,int low,int high){
int start = low;
int end = high;
int key = a[low]; // 第一个数做为 key
while(end>start){
//从后往前比较:
while(end>start&&a[end]>=key) //如果没有比关键值小的,比较下一个,直到有比关键值小的交换位置,然后又从前往后比较
end--;
if(a[end]<=key){
int temp = a[end];
a[end] = a[start];
a[start] = temp;
}
//从前往后比较
while(end>start&&a[start]<=key)//如果没有比关键值大的,比较下一个,直到有比关键值大的交换位置
start++;
if(a[start]>=key){
int temp = a[start];
a[start] = a[end];
a[end] = temp;
}
//此时第一次循环比较结束,关键值的位置已经确定了。左边的值都比关键值小,右边的值都比关键值大,但是两边的顺序还有可能是不一样的,进行下面的递归调用
}
//递归
if(start>low) sort(a,low,start-1);//左边序列。第一个索引位置到关键值索引-1
if(end<high) sort(a,end+1,high);//右边序列。从关键值索引+1到最后一个
}
}
运行结果:
1 5 9 9 12 15 16 20 23 30 45
七、归并排序
基本思想:
归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。
性能分析:
归并排序是稳定的排序方法。归并排序的时间复杂度为O(nlogn)。速度仅次于快速排序,为稳定排序算法,一般用于对总体无序,但是各子项相对有序的数列。
java源码:
package sort_algorithm;
public class MergeSort {
public static void main(String[] args) {
int[] a = { 49, 38, 65, 97, 76, 13, 27, 49, 78, 34, 12, 64, 1, 8 };
// 归并排序
mergeSort(a, 0, a.length - 1);
for (int i = 0; i < a.length; i++) {
System.out.print(a[i] + " ");
}
}
private static void mergeSort(int[] a, int left, int right) {
if (left < right) {
int middle = (left + right) / 2;
// 对左边进行递归
mergeSort(a, left, middle);
// 对右边进行递归
mergeSort(a, middle + 1, right);
// 合并
merge(a, left, middle, right);
}
}
private static void merge(int[] a, int left, int middle, int right) {
int[] tmpArr = new int[a.length];
int mid = middle + 1; // 右边的起始位置
int tmp = left;
int third = left;
while (left <= middle && mid <= right) {
// 从两个数组中选取较小的数放入中间数组
if (a[left] <= a[mid]) {
tmpArr[third++] = a[left++];
} else {
tmpArr[third++] = a[mid++];
}
}
// 将剩余的部分放入中间数组
while (left <= middle) {
tmpArr[third++] = a[left++];
}
while (mid <= right) {
tmpArr[third++] = a[mid++];
}
// 将中间数组复制回原数组
while (tmp <= right) {
a[tmp] = tmpArr[tmp++];
}
}
}
排序结果:
1 8 12 13 27 34 38 49 49 64 65 76 78 97
八、基数排序(Radix Sort)
基本思想:
将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后,数列就变成一个有序序列。
性能分析:
基数排序是稳定的排序算法。基数排序的时间复杂度为O(d(n+r)),d为位数,r为基数。
java源码:
package sort_algorithm;
import java.util.Arrays;
public class RadixSort {
public static void main(String[] args) {
int[] data = new int[] { 1100, 192, 221, 12, 23 };
print(data);
radixSort(data, 10, 4);
System.out.println("排序后的数组:");
print(data);
}
public static void radixSort(int[] data, int radix, int d) {
// 缓存数组
int[] tmp = new int[data.length];
// buckets用于记录待排序元素的信息
// buckets数组定义了max-min个桶
int[] buckets = new int[radix];
for (int i = 0, rate = 1; i < d; i++) {
// 重置count数组,开始统计下一个关键字
Arrays.fill(buckets, 0);
// 将data中的元素完全复制到tmp数组中
System.arraycopy(data, 0, tmp, 0, data.length);
// 计算每个待排序数据的子关键字
for (int j = 0; j < data.length; j++) {
int subKey = (tmp[j] / rate) % radix;
buckets[subKey]++;
}
for (int j = 1; j < radix; j++) {
buckets[j] = buckets[j] + buckets[j - 1];
}
// 按子关键字对指定的数据进行排序
for (int m = data.length - 1; m >= 0; m--) {
int subKey = (tmp[m] / rate) % radix;
data[--buckets[subKey]] = tmp[m];
}
rate *= radix;
}
}
public static void print(int[] data) {
for (int i = 0; i < data.length; i++) {
System.out.print(data[i] + "\t");
}
System.out.println();
}
}
参考:
http://www.cnblogs.com/liuling/p/2013-7-24-01.html
http://blog.youkuaiyun.com/happy_wu/article/details/51841244
http://www.codeceo.com/article/8-java-sort.html
http://blog.youkuaiyun.com/u011225629/article/details/45271997
http://blog.chinaunix.net/uid-29118832-id-3926008.html
http://blog.youkuaiyun.com/code4grow/article/details/22942389
关于各算法性能分析:
http://www.cnblogs.com/Braveliu/archive/2013/01/15/2861201.html