import csv
import jieba
import numpy as np
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.svm import SVC
from sklearn.pipeline import Pipeline
from sklearn import metrics
from sklearn.grid_search import GridSearchCV
from sklearn.model_selection import train_test_split
#导入正例负例数据
def load_datas(bid):
Pfilename = 'result'+str(bid)+'positive.csv'
df_P = pd.DataFrame(pd.read_csv(Pfilename, encoding='utf-8'))
Nfilename = 'result'+str(bid)+'negative.csv'
df_N = pd.DataFrame(pd.read_csv(Nfilename, encoding='utf-8'))
#为正例打标签1
df_P = df_P[['name']]
df_P['label'] =
SVM调包(Python3)
最新推荐文章于 2025-03-22 17:12:06 发布