package apiTest
import java.util.{Properties, Random}
import org.apache.flink.api.common.serialization.SimpleStringSchema
import org.apache.flink.streaming.api.functions.source.SourceFunction
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer011
object apitest {
def main(args: Array[String]): Unit = {
// 创建执行环境
val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setParallelism(1)
// 1. 从集合中读取数据
val dataList = List(
SensorReading("sensor_1", 1547718199, 35.8),
SensorReading("sensor_6", 1547718201, 15.4),
SensorReading("sensor_7", 1547718202, 6.7),
SensorReading("sensor_10", 1547718205, 38.1)
)
val stream1 = env.fromCollection(dataList)
// 2. 从文件中读取数据
val inputPath = "D:\\Mywork\\workspace\\Project_idea\\flink-2021\\src\\main\\resources\\sensor.txt"
val stream2 = env.readTextFile(inputPath)
// 3. 从kafka中读取数据
val properties = new Properties()
properties.setProperty("bootstrap.servers", "hadoop102:9092")
properties.setProperty("group.id", "consumer-group")
val stream3 = env.addSource(new FlinkKafkaConsumer011[String]("sensor", new SimpleStringSchema(), properties))
// 4. 自定义Source
val stream4 = env.addSource(new MySensorSource)
stream4.print()
env.execute("source test")
}
}
// 定义样例类,温度传感器
case class SensorReading(id: String, timestamp: Long, temperature: Double)
// 自定义SourceFunction
class MySensorSource() extends SourceFunction[SensorReading]{
// 定义一个标识位flag,用来表示数据源是否正常运行发出数据
var running: Boolean = true
override def cancel(): Unit = running = false
override def run(ctx: SourceFunction.SourceContext[SensorReading]): Unit = {
// 定义一个随机数发生器
val rand = new Random()
// 随机生成一组(10个)传感器的初始温度: (id,temp)
var curTemp = 1.to(10).map( i => ("sensor_" + i, rand.nextDouble() * 100) )
// 定义无限循环,不停地产生数据,除非被cancel
while(running){
// 在上次数据基础上微调,更新温度值
curTemp = curTemp.map(
data => (data._1, data._2 + rand.nextGaussian())
)
// 获取当前时间戳,加入到数据中,调用ctx.collect发出数据
val curTime = System.currentTimeMillis()
curTemp.foreach(
data => ctx.collect(SensorReading(data._1, curTime, data._2))
)
// 间隔500ms
Thread.sleep(1000)
}
}
}