International Morse Code defines a standard encoding where each letter is mapped to a series of dots and dashes, as follows: “a” maps to “.-“, “b” maps to “-…”, “c” maps to “-.-.”, and so on.
For convenience, the full table for the 26 letters of the English alphabet is given below:
[“.-“,”-…”,”-.-.”,”-..”,”.”,”..-.”,”–.”,”….”,”..”,”.—”,”-.-“,”.-..”,”–”,”-.”,”—”,”.–.”,”–.-“,”.-.”,”…”,”-“,”..-“,”…-“,”.–”,”-..-“,”-.–”,”–..”]
Now, given a list of words, each word can be written as a concatenation of the Morse code of each letter. For example, “cab” can be written as “-.-.-….-“, (which is the concatenation “-.-.” + “-…” + “.-“). We’ll call such a concatenation, the transformation of a word.
Return the number of different transformations among all words we have.
Example:
Input: words = ["gin", "zen", "gig", "msg"]
Output: 2
Explanation:
The transformation of each word is:
"gin" -> "--...-."
"zen" -> "--...-."
"gig" -> "--...--."
"msg" -> "--...--."
There are 2 different transformations, “–…-.” and “–…–.”.
Note:
- The length of words will be at most 100.
- Each words[i] will have length in range [1, 12].
- words[i] will only consist of lowercase letters.
可能是第二简单的问题
转换的步骤很简单,问题是如何输出不同的摩斯码序列,这是我是通过set实现的,list也有单独的函数来处理。如果要我们自己判断两个序列是否相等,应该怎么做才能最快?其实可以通过把‘-‘看作1,把’.’看作2然后变成数字再比较。
代码如下
class Solution:
def uniqueMorseRepresentations(self, words):
"""
:type words: List[str]
:rtype: int
"""
def encodeM(string):
table = [".-","-...","-.-.","-..",".","..-.","--.","....","..",".---","-.-",".-..","--","-.","---",".--.","--.-",".-.","...","-","..-","...-",".--","-..-","-.--","--.."]
return ''.join([table[ord(x) - ord('a')] for x in string])
Mset = set()
for word in words:
Mset.add(encodeM(word))
return len(Mset)