import tensorflow as tf
import numpy as np
X = tf.constant([[1, 2, 3, 4], [4, 5, 6, 7], [7, 8, 9, 10], [10, 11, 12, 13]])
X = tf.reshape(X, [1, 4, 4, 1])
Y = tf.nn.max_pool(X,ksize=[1,2,2,1],strides=[1,4,4,1],padding="SAME")
with tf.Session() as sess:
X = sess.run(X)
print(X.shape)
Y = sess.run(Y)
print(Y)
value:池化的输入,shape为[batch, height, width, channels]这
ksize :池化窗口的大小,一个四维向量[1, height, width, 1],batch和channels不做池化设置为1
strides: 窗口在每一个维度上滑动的步长,一般也是[1, stride,stride, 1]
padding:VALID容易理解 ;SAME和步长:经过尝试,padding设置为SAME时只在输入矩阵右边添加一列,下边添加一行。卷积层是添加一圈0