pytorch 如何从checkpoints中继续训练

左1:从头开始训练时,lr的变化。 左2:从epoch100时开始训练

🙋‍♂️ 张同学,zhangruiyuan@zju.edu.cn ,有问题请联系我

一、导入一些必要的包

import os
import sys
import pandas as pd
import numpy as np 
from tqdm import tqdm,trange
from matplotlib import pyplot as plt
import seaborn as sns
import json
import pathlib
from pathlib import Path
import torch
from torch import nn, einsum
import torch.nn.functional as F

from einops import rearrange, repeat
from einops.layers.torch import Rearrange

from transformers import(
    get_scheduler
)

二、定义模型

class MyModal(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.tf = nn.TransformerEncoderLayer(d_model=512, nhead=8)
        self.linear = nn.Linear(512, 10)
        self.softmax = nn.Softmax(dim=1)
    
    def forward(self, x):
        x = self.tf(x)
        x = self.linear(x[:,0])
        x = self.softmax(x)
        return x

三、训练时代码

model = MyModal()
max_train_steps = 200

optimizer = torch.optim.AdamW(model.parameters(), lr=0.1)
lr_scheduler = get_scheduler(
    name='linear',
    optimizer=optimizer,
    num_warmup_steps=20,
    num_training_steps=max_train_steps,
)
criterion = nn.CrossEntropyLoss()

lrs = []

start_step = 0
for i in range(start_step):
    optimizer.step()
    lr_scheduler.step()   # 对优化器中的lr进行更新
    optimizer.zero_grad() # 更新模型记录的梯度为0

for i in range(max_train_steps-start_step):
    src = torch.rand(10,32,512)
    labels = torch.randint(0,10,[10]) # bs = 10
    output = model(src)
    loss = criterion(output, labels)
    loss.backward()
    optimizer.step()
    lr_scheduler.step()   # 对优化器中的lr进行更新
    optimizer.zero_grad() # 更新模型记录的梯度为0

    # https://blog.youkuaiyun.com/qq_41375318/article/details/115540896
    lrs.append(optimizer.state_dict()['param_groups'][0]['lr'])

x = np.arange(1, len(lrs)+1)
plt.plot(x, lrs)
plt.show()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值