数据结构和算法-06线段树-02

线段树实现-基于数组

构建数组

为什么构建数组的容量为数组长度的4 * N容量?

计算一颗满二叉树的节点总数,C 为满二叉树的层数,c = h +1(二叉树的层 = 高度 + 1)

image-20241212164326913

计算二叉树的高度 : log2n, 可以看出 层=高度+1

image-20241212165412528

一个平衡二叉树的高度在[log2 n, log2n+1]之间,下图的高度为3, h= [log7, log27+1]–>[2,3]

image-20241212170122110

将最大可能: h = log2n+1 带入 2h+1 -1

image-20241212170639760 = 4 * n -1 近似于 4 * n 总空间数。

初始化数组
private Integer[] elements;
private final int N;

public SegmentArrTree(Integer[] data) {
    this.N = 4 * data.length;
    elements = new Integer[this.N];
    buildTree(data, 0, 0, data.length - 1);
}

构建线段树

private Integer[] elements;
private final int N;

public SegmentArrTree(Integer[] data) {
    this.N = 4 * data.length;
    elements = new Integer[this.N];
    buildTree(data, 0, 0, data.length - 1);
}

public void buildTree(Integer[] data, int index, int start, int end) {
    if (end < start) return;
    if (start == end) {
        elements[index] = data[start];
        return;
    }

    int mid = start + (end - start) / 2;
    int leftIndex = 2 * index + 1;
    int rightIndex = 2 * index + 2;

    buildTree(data, leftIndex, start, mid);
    buildTree(data, rightIndex, mid + 1, end);

    elements[index] = elements[leftIndex] + elements[rightIndex];
}

线段树查询

private int query(int queryStart, int queryEnd, int treeIndex, int start, int end) {
    if (queryStart > queryEnd) return 0;
    if (queryStart == start && queryEnd == end) return elements[treeIndex];
    int mid = start + (end - start) / 2;
    int leftIndex = 2 * treeIndex + 1;
    int rightIndex = 2 * treeIndex + 2;

    if (queryEnd <= mid) {
        return query(queryStart, queryEnd, leftIndex, start, mid);
    } else if (queryStart > mid) {
        return query(queryStart, queryEnd, rightIndex, mid + 1, end);
    } else { //左右部分包含
        return query(queryStart, mid, leftIndex, start, mid)
                + query(mid + 1, queryEnd, rightIndex, mid + 1, end);
    }

}

public long query(int queryStart, int queryEnd) {
    return query(queryStart, queryEnd, 0, 0, N - 1);
}

public static void main(String[] args) {
    Integer[] a = {1, 3, 5, 7, 9, 11};
    SegmentArrTree tree = new SegmentArrTree(a);
    System.out.println(tree.query(0, 3));
}

更新数据

public void update(int node, int left, int right, int idx, int val, Integer[] data) {
    if (left == right) {    //l=r的时候,表示找到了idx对应的结点
        elements[node] = val;    //更新树的结点
        data[idx] = val;        //更新原数组的值
        return;
    }
    int mid = left + (right - left) / 2;
    int leftIndex = 2 * node + 1;
    int rightIndex = 2 * node + 2;
    if (idx <= mid) {
        update(leftIndex, left, mid, idx, val, data);
    } else {
        update(rightIndex, mid + 1, right, idx, val, data);
    }
    //更新父节点的值
    elements[node] = elements[leftIndex] + elements[rightIndex];
}

完整代码

package com.training.segment;

import java.lang.reflect.Array;
import java.util.Arrays;

public class SegmentArrTree {
    private Integer[] elements;
    private final int N;

    public SegmentArrTree(Integer[] data) {
        this.N = data.length;
        elements = new Integer[4 * this.N];
        buildTree(data, 0, 0, data.length - 1);
    }


    public void buildTree(Integer[] data, int index, int start, int end) {
        if (end < start) return;
        if (start == end) {
            elements[index] = data[start];
            return;
        }

        int mid = start + (end - start) / 2;
        int leftIndex = 2 * index + 1;
        int rightIndex = 2 * index + 2;

        buildTree(data, leftIndex, start, mid);
        buildTree(data, rightIndex, mid + 1, end);

        elements[index] = elements[leftIndex] + elements[rightIndex];
    }

    public void print() {
        for (Integer e : elements) {
            System.out.print(e + "\t");
        }
    }

    private int query(int queryStart, int queryEnd, int treeIndex, int start, int end) {
        if (queryStart > queryEnd) return 0;
        if (queryStart == start && queryEnd == end) return elements[treeIndex];
        int mid = start + (end - start) / 2;
        int leftIndex = 2 * treeIndex + 1;
        int rightIndex = 2 * treeIndex + 2;

        if (queryEnd <= mid) {
            return query(queryStart, queryEnd, leftIndex, start, mid);
        } else if (queryStart > mid) {
            return query(queryStart, queryEnd, rightIndex, mid + 1, end);
        } else { //左右部分包含
            return query(queryStart, mid, leftIndex, start, mid)
                    + query(mid + 1, queryEnd, rightIndex, mid + 1, end);
        }

    }

    public long query(int queryStart, int queryEnd) {
        return query(queryStart, queryEnd, 0, 0, N - 1);
    }

    public void update(int node, int left, int right, int idx, int val, Integer[] data) {
        if (left == right) {    //l=r的时候,表示找到了idx对应的结点
            elements[node] = val;    //更新树的结点
            data[idx] = val;        //更新原数组的值
            return;
        }
        int mid = left + (right - left) / 2;
        int leftIndex = 2 * node + 1;
        int rightIndex = 2 * node + 2;
        if (idx <= mid) {
            update(leftIndex, left, mid, idx, val, data);
        } else {
            update(rightIndex, mid + 1, right, idx, val, data);
        }
        //更新父节点的值
        elements[node] = elements[leftIndex] + elements[rightIndex];
    }


    public static void main(String[] args) {
        Integer[] a = {1, 3, 5, 7, 9, 11};
        System.out.println(Arrays.toString(a));
        SegmentArrTree tree = new SegmentArrTree(a);

        tree.print();
        System.out.println();

        System.out.println(tree.query(0, 3));
        tree.update(0, 0, a.length - 1, 4, 6, a);
        tree.print();
        System.out.println();

        System.out.println(tree.query(0, 3));
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值