数据结构和算法-动态规划(3)-经典问题

动态规划常见问题

打家劫舍

题目

[力扣198] 198. 打家劫舍 - 力扣(LeetCode)

题目描述

你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警

给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。

示例 1:

输入:[1,2,3,1]
输出:4
解释:偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。
     偷窃到的最高金额 = 1 + 3 = 4

示例 2:

输入:[2,7,9,3,1]
输出:12
解释:偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)。
     偷窃到的最高金额 = 2 + 9 + 1 = 12

解决方案

image-20241025173303997
边界条件
  • 只有一间房子

    image-20241025173425916
    if(nums.length==1) return nums[0];
    
  • 有2间房子

    image-20241025173705041
    if (nums.length == 2)
    return Math.max(nums[0],nums[1]);
    
一般情况
  • 定义记忆化数组int[] , 记录每次偷窃成功的值。

    int[] dp = new int[nums.length];
    
  • 初始化dp(1间房子或两间房子)

    dp[0] = nums[0];
    dp[1] = Math.max(nums[0],nums[1]);
    
  • 其它情况

    • 当前盗取的第K个房间的结果与 前K-2 个有关
    • 如果不选择盗取当前K,则与K-1有关
    //状态转移方程
    dp[K] = max(dp[K-2] + nums[K], dp[K-1]);
    

    tips: 不能盗取相邻的房子

    image-20241025175059256

    for (int i = 2; i < nums.length; i++) {
         
        dp[i] = Math.max(dp[i - 2] + nums[i], dp[i - 1]);
    }
    

    提交模版

    class Solution {
         
        public int rob(int[] nums) {
         
            
        }
    }
    

    参考实现

    class Solution {
         
        public int rob(int[] nums) {
         
            // 定义dp数组,存储最优结果
            int[] dp = new int[nums.length];
    
            if (nums.length == 1) {
         
                return nums[0];
            }
    
            /*
             * 边界条件: 只有两间房子
     
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值