1019 General Palindromic Number

本文介绍了一个算法,用于判断一个十进制正整数在特定进制下是否为回文数,并提供了实现这一功能的C++代码示例。通过将输入的十进制数转换为目标进制,然后检查其数字序列是否对称来完成判断。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

1019 General Palindromic Number (20 分)

题目链接

A number that will be the same when it is written forwards or backwards is known as a Palindromic Number. For example, 1234321 is a palindromic number. All single digit numbers are palindromic numbers.

Although palindromic numbers are most often considered in the decimal system, the concept of palindromicity can be applied to the natural numbers in any numeral system. Consider a number N>0 in base b≥2, where it is written in standard notation with k+1 digits a ​i ​​ as ∑ ​i=0 ​k ​​ (a ​i ​​ b ​i ​​ ). Here, as usual, 0≤a ​i ​​ <b for all i and a ​k ​​ is non-zero. Then N is palindromic if and only if a ​i ​​ =a ​k−i ​​ for all i. Zero is written 0 in any base and is also palindromic by definition.

Given any positive decimal integer N and a base b, you are supposed to tell if N is a palindromic number in base b.

Input Specification: Each input file contains one test case. Each case consists of two positive numbers N and b, where 0<N≤10 ​9 ​​ is the decimal number and 2≤b≤10 ​9 ​​ is the base. The numbers are separated by a space.

Output Specification: For each test case, first print in one line Yes if N is a palindromic number in base b, or No if not. Then in the next line, print N as the number in base b in the form “a ​k ​​ a ​k−1 ​​ … a ​0 ​​ “. Notice that there must be no extra space at the end of output.

Sample Input 1:

27 2

Sample Output 1:

Yes

1 1 0 1 1

Sample Input 2:

121 5

Sample Output 2:

No

4 4 1

思路

输入一个数n和一个底数b,判断在b进制下n是不是回文数,如果是输出yes,并输出在b进制下的数,如果不是输出No,并输出b进制下的数

这道题很简单,主要是一个进制转化的问题,进制转化进制转化

代码

#include <iostream>

using namespace std;

int main() {
    int n,b;
    cin>>n>>b;
    int result[100000];
    int cnt = 0;
    while(n!=0) {
        result[cnt] = n%b;
        n = n/b;
        cnt++;
    }
    bool flag = true;
    for(int i=0; i<cnt/2; i++) {
        if(result[i]!=result[cnt-1-i]) {
            flag = false;
        }
    }
    cout<<(flag?"Yes\n":"No\n");
    for(int i=cnt-1;i>=0;i--){
        if(i!=0){
            cout<<result[i]<<" ";
        }else{
            cout<<result[i];
        }
    }
    return 0;
}

??正文结束??
### 关于回文子序列的算法及其示例 #### 定义与概念 回文是指正读和反读都相同的字符序列。对于给定字符串中的任意字符组合形成的子序列,如果该子序列满足上述条件,则称为回文子序列。 #### 动态规划求解最长回文子序列 为了找到一个字符串中最长的回文子序列,可以采用动态规划的方法来解决这个问题。设 `dp[i][j]` 表示从第 i 到 j 的子串内的最长回文子序列长度: - 当 s[i]==s[j] 时, dp[i][j]=dp[i+1][j−1]+2; - 否则, dp[i][j]=max(dp[i+1][j],dp[i][j−1]). 最终的结果保存在 `dp[0][len(s)-1]` 中[^3]. ```python def longest_palindromic_subseq(s: str) -> int: n = len(s) # 创建二维数组用于存储中间结果 dp = [[0]*n for _ in range(n)] # 初始化单个字符的情况 for i in range(n): dp[i][i] = 1 # 填充表格 for length in range(2, n + 1): for start in range(n - length + 1): end = start + length - 1 if s[start] == s[end]: dp[start][end] = dp[start+1][end-1] + 2 else: dp[start][end] = max(dp[start+1][end], dp[start][end-1]) return dp[0][-1] ``` 此方法的时间复杂度为 O(n²),空间复杂度同样为 O(n²). #### 枚举所有可能的回文子序列 除了寻找最长的回文子序列外,还可以通过枚举的方式找出所有的不同回文子序列。这种方法适用于较短的输入字符串,并且可以通过位掩码技术实现高效的遍历。 ```python from collections import defaultdict def count_distinct_palindrome_subsequences(text: str) -> list[str]: results = set() memo = {} def backtrack(start=0, path=""): nonlocal text, results, memo key = (start, path) if key not in memo: temp_set = {path} if path == path[::-1] else {} for index in range(start, len(text)): new_path = path + text[index] if new_path == new_path[::-1]: temp_set.add(new_path) temp_set |= backtrack(index + 1, new_path) memo[key] = temp_set results.update(memo[(start, path)]) return memo[(start, path)] backtrack() return sorted(list(results)) ``` 这段代码会返回按字典序排列的不同回文子序列列表.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值