位运算总结(按位与,或,异或)

按位与运算符(&)

参加运算的两个数据,按二进制位进行“与”运算。

运算规则:0&0=0;  0&1=0;   1&0=0;    1&1=1;

      即:两位同时为“1”,结果才为“1”,否则为0

例如:3&5  即 0000 0011& 0000 0101 = 00000001  因此,3&5的值得1。


另,负数按补码形式参加按位与运算。

“与运算”的特殊用途:

(1)清零。如果想将一个单元清零,即使其全部二进制位为0,只要与一个各位都为零的数值相与,结果为零。


(2)取一个数中指定位

方法:找一个数,对应X要取的位,该数的对应位为1,其余位为零,此数与X进行“与运算”可以得到X中的指定位。

例:设X=10101110,

   取X的低4位,用 X & 0000 1111 = 00001110 即可得到;

   还可用来取X的2、4、6位。


按位或运算符(|)

参加运算的两个对象,按二进制位进行“或”运算。

运算规则:0|0=0;  0|1=1;  1|0=1;   1|1=1;

     即 :参加运算的两个对象只要有一个为1,其值为1。

例如:3|5 即 00000011 | 0000 0101 = 00000111  因此,3|5的值得7。


另,负数按补码形式参加按位或运算。

“或运算”特殊作用:

(1)常用来对一个数据的某些位置1。

方法:找到一个数,对应X要置1的位,该数的对应位为1,其余位为零。此数与X相或可使X中的某些位置1。

例:将X=10100000的低4位置1 ,用X | 0000 1111 = 1010 1111即可得到。



异或运算符(^)

参加运算的两个数据,按二进制位进行“异或”运算。

运算规则:0^0=0;  0^1=1;  1^0=1;   1^1=0;

   即:参加运算的两个对象,如果两个相应位为“异”(值不同),则该位结果为1,否则为0。


“异或运算”的特殊作用:

(1)使特定位翻转找一个数,对应X要翻转的各位,该数的对应位为1,其余位为零,此数与X对应位异或即可。

例:X=10101110,使X低4位翻转,用X ^0000 1111 = 1010 0001即可得到。


(2)与0相异或,保留原值 ,X ^ 00000000 = 1010 1110。

下面重点说一下按位异或,异或其实就是不进位加法,如1+1=0,,0+0=0,1+0=1。

异或的几条性质:

1、交换律

2、结合律(即(a^b)^c == a^(b^c))

3、对于任何数x,都有x^x=0,x^0=x

4、自反性:  a^b^b=a^0=a;

异或运算最常见于多项式除法,不过它最重要的性质还是自反性:A XOR B XOR B = A,即对给定的数A,用同样的运算因子(B)作两次异或运算后仍得到A本身。这是一个神奇的性质,利用这个性质,可以获得许多有趣的应用。 例如,所有的程序教科书都会向初学者指出,要交换两个变量的值,必须要引入一个中间变量。但如果使用异或,就可以节约一个变量的存储空间: 设有A,B两个变量,存储的值分别为a,b,则以下三行表达式将互换他们的值 表达式 (值) :

a=a^b;

b=b^a;

a=a^b;

应用举例1:

1-1000放在含有1001个元素的数组中,只有唯一的一个元素值重复,其它均只出现

一次。每个数组元素只能访问一次,设计一个算法,将它找出来;不用辅助存储空

间,能否设计一个算法实现?

解法一、显然已经有人提出了一个比较精彩的解法,将所有数加起来,减去1+2+...+1000的和。

这个算法已经足够完美了,相信出题者的标准答案也就是这个算法,唯一的问题是,如果数列过大,则可能会导致溢出。

解法二、异或就没有这个问题,并且性能更好。

将所有的数全部异或,得到的结果与1^2^3^...^1000的结果进行异或,得到的结果就是重复数。


左移运算符(<<)

将一个运算对象的各二进制位全部左移若干位(左边的二进制位丢弃,右边补0)。

例:a = a<< 2将a的二进制位左移2位,右补0,

左移1位后a = a *2; 

若左移时舍弃的高位不包含1,则每左移一位,相当于该数乘以2。

右移运算符(>>)

将一个数的各二进制位全部右移若干位,正数左补0,负数左补1,右边丢弃。

操作数每右移一位,相当于该数除以2。

例如:a = a>> 2 将a的二进制位右移2位,

左补0 or 补1得看被移数是正还是负。

不同长度的数据进行位运算

如果两个不同长度的数据进行位运算时,系统会将二者按右端对齐,然后进行位运算

以“与”运算为例说明如下:我们知道在C语言中long型占4个字节,int型占2个字节,如果一个long型数据与一个int型数据进行“与”运算,右端对齐后,左边不足的位依下面三种情况补足,

(1)如果整型数据为正数,左边补16个0。

(2)如果整型数据为负数,左边补16个1。

(3)如果整形数据为无符号数,左边也补16个0。

如:long a=123;int b=1;计算a& b。


如:long a=123;int b=-1;计算a& b。


如:long a=123;unsigned intb=1;计算a & b。

### 异或运算的基本性质 异或运算具有以下几个基本性质: 1. **交换律** 对于任意两个整数 \(A\) 和 \(B\),有 \(A \oplus B = B \oplus A\)。这意味着在执行异或操作时,操作数的顺序不影响最终结果[^1]。 2. **结合律** 如果存在三个整数 \(A\)、\(B\) 和 \(C\),那么可以得到 \((A \oplus B) \oplus C = A \oplus (B \oplus C)\),这表明多个数值连续进行异或计算时,括号的位置不会影响结果。 3. **恒等律** 任何数与零做异或运算都会返回该数本身,即 \(A \oplus 0 = A\)。这是因为零的所有位均为 `0`,而按照异或定义,当其中一个操作数为 `0` 时,结果等于另一个操作数。 4. **自反性/逆元特性** 当一个数与其自身相异或时,结果总是 `0`,表达式形式为 \(A \oplus A = 0\)。这是由于每一位上相同的值会相互抵消。 5. **幂等性缺失** 虽然某些其他逻辑运算可能具备幂等性(比如 AND OR),但是 XOR 不满足这一属性——重复施加同一个输入并不会保持原样不变而是变为相反状态者归零。 ### 异或运算的应用场景 基于上述提到的独特性质异或广泛应用于多种领域和技术实现当中: - **数据加密解密** 利用异或不可预测性和可逆特点,在密码学里经常作为基础算法之一来构建简单的流加密方案。例如通过固定密钥对明文逐比特实施一次一密技术即可完成初步保护措施[^2]。 - **错误检测机制** 在通信协议设计过程中采用奇偶校验方法时也会涉及到异或概念;发送端先统计有效载荷里面含有多少个‘1’再附加额外标志位使得整体数量成为期望模式(单数还是双数取决于具体需求), 接收方收到消息后再重新验证一遍从而判断传输期间是否存在误码现象发生. - **快速查找丢失重复项等问题解决策略** 借助于自我消除特性的优势, 可以巧妙地处理数组中寻找唯一元素之类的挑战型题目. ```python def find_unique_element(nums): result = 0 for num in nums: result ^= num return result ``` 此函数利用了异或的自反性原理,遍历列表中的每一个数字并累积它们之间的异或值,最后剩下的那个未被配对的就是我们要找的目标独特值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nier6088

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值