sparkstreaming实时流处理项目(四)

本文详细介绍从日志收集、处理到数据分析的全过程。利用Flume实时收集日志,通过Kafka进行消息传递,最后借助Spark Streaming实现日志数据的实时清洗与分析。涵盖Flume配置、Kafka消费与Spark Streaming应用实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.监控最新的日志

使用命令检测日志:

tail -200f access.log

在这里插入图片描述

2.编写flume的conf

vi streaming_project.conf

添加conf内容

exec-memory-logger.sources = exec-source
exec-memory-logger.sinks = logger-sink
exec-memory-logger.channels = memory-channel

exec-memory-logger.sources.exec-source.type = exec
exec-memory-logger.sources.exec-source.command = tail -F /home/hadoop/data/project/logs/access.log
exec-memory-logger.sources.exec-source.shell = /bin/sh -c

exec-memory-logger.channels.memory-channel.type = memory

exec-memory-logger.sinks.logger-sink.type = logger

exec-memory-logger.sources.exec-source.channels = memory-channel
exec-memory-logger.sinks.logger-sink.channel = memory-channel

启动flume

flume-ng agent --name exec-memory-logger --conf $FLUME_HOME/conf --conf-file /home/hadoop/data/project/streaming_project.conf -Dflume.root.logger=INFO,console

过一分钟产生日志:
在这里插入图片描述

3.对接kafka

 vi streaming_project2.conf

flume对接kafka

exec-memory-kafka.sources = exec-source
exec-memory-kafka.sinks = kafka-sink
exec-memory-kafka.channels = memory-channel

exec-memory-kafka.sources.exec-source.type = exec
exec-memory-kafka.sources.exec-source.command = tail -F /home/hadoop/data/project/logs/access.log
exec-memory-kafka.sources.exec-source.shell = /bin/sh -c

exec-memory-kafka.channels.memory-channel.type = memory

exec-memory-kafka.sinks.kafka-sink.type = org.apache.flume.sink.kafka.KafkaSink
exec-memory-kafka.sinks.kafka-sink.brokerList = hadoop000:9092
exec-memory-kafka.sinks.kafka-sink.topic = streamingtopic
exec-memory-kafka.sinks.kafka-sink.batchSize = 5
exec-memory-kafka.sinks.kafka-sink.requiredAcks = 1

exec-memory-kafka.sources.exec-source.channels = memory-channel
exec-memory-kafka.sinks.kafka-sink.channel = memory-channel

启动flume

 flume-ng agent --name exec-memory-kafka --conf $FLUME_HOME/conf --conf-file /home/hadoop/data/project/streaming_project2.conf -Dflume.root.logger=INFO,console

kafka消费

kafka-console-consumer.sh --zookeeper localhost:2181 --topic streamingtopic --from-beginning

在这里插入图片描述

4.sparkstreaming对接kafka

package com.qianliu

import org.apache.spark.SparkConf
import org.apache.spark.api.java.JavaSparkContext
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{Seconds, StreamingContext}

/**
  * Spark Streaming对接Kafka
  */
object KafkaStreamingApp {

  def main(args: Array[String]): Unit = {
    //判断输入的数据长度是否符合要去
    if(args.length != 4) {
      System.err.println("Usage: KafkaStreamingApp <zkQuorum> <group> <topics> <numThreads>")
    }

    //初始化输入的数据为Array
    val Array(zkQuorum, group, topics, numThreads) = args

    //初始化sparkcontext
    val sparkConf = new SparkConf().setAppName("KafkaReceiverWordCount")
      .setMaster("local[2]")
    sparkConf.set("spark.testing.memory", "512000000")
    //sparkstreamingcontext
    val ssc = new StreamingContext(sparkConf, Seconds(60))

    //将多个topic输入
    val topicMap = topics.split(",").map((_, numThreads.toInt)).toMap

    // TODO... Spark Streaming如何对接Kafka
    val messages = KafkaUtils.createStream(ssc, zkQuorum, group,topicMap)

    // TODO... 自己去测试为什么要取第二个
    messages.map(_._2).count().print()

    //启动spark
    ssc.start()
    ssc.awaitTermination()
  }
}

每一分钟100条结果,符合我们的模拟的数据产生速率:
在这里插入图片描述

5.清洗数据

package com.qianliu

import com.qianliu.domain.ClickLog
import com.qianliu.utils.DateUtils
import org.apache.spark.SparkConf
import org.apache.spark.api.java.JavaSparkContext
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{Seconds, StreamingContext}

/**
  * Spark Streaming对接Kafka
  */
object KafkaStreamingApp {

  def main(args: Array[String]): Unit = {
    //判断输入的数据长度是否符合要去
    if(args.length != 4) {
      System.err.println("Usage: KafkaStreamingApp <zkQuorum> <group> <topics> <numThreads>")
    }

    //初始化输入的数据为Array
    val Array(zkQuorum, group, topics, numThreads) = args

    //初始化sparkcontext
    val sparkConf = new SparkConf().setAppName("KafkaReceiverWordCount")
      .setMaster("local[2]")
    sparkConf.set("spark.testing.memory", "512000000")
    //sparkstreamingcontext
    val ssc = new StreamingContext(sparkConf, Seconds(60))

    //将多个topic输入
    val topicMap = topics.split(",").map((_, numThreads.toInt)).toMap

    // TODO... Spark Streaming如何对接Kafka
    val messages = KafkaUtils.createStream(ssc, zkQuorum, group,topicMap)

    // TODO... 自己去测试为什么要取第二个
    //messages.map(_._2).count().print()

    //数据清洗
    val logs = messages.map(_._2)
    val cleanData = logs.map(line => {
      val infos = line.split("\t")

      // infos(2) = "GET /class/130.html HTTP/1.1"
      // url = /class/130.html
      val url = infos(2).split(" ")(1)
      var courseId = 0

      // 把实战课程的课程编号拿到了
      if (url.startsWith("/class")) {
        val courseIdHTML = url.split("/")(2)
        courseId = courseIdHTML.substring(0, courseIdHTML.lastIndexOf(".")).toInt
      }

      ClickLog(infos(0), DateUtils.parseToMinute(infos(1)), courseId, infos(3).toInt, infos(4))
    }).filter(clicklog => clicklog.courseId != 0)

    //打印清洗出来的日志
    cleanData.print()

    //启动spark
    ssc.start()
    ssc.awaitTermination()
  }
}

查看结果:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值