- 博客(0)
- 资源 (8)
- 收藏
- 关注
浙江大学人工智能课程课件
浙江大学人工智能课程课件,内容有:
Introduction
Problem-solving by search( 4 weeks)
Uninformed Search and Informed (Heuristic) Search (1 week)
Adversarial Search: Minimax Search, Evaluation Functions, Alpha-Beta Search, Stochastic Search
Adversarial Search: Multi-armed bandits, Upper Confidence Bound (UCB),Upper Confidence Bounds on Trees, Monte-Carlo Tree Search(MCTS)
Statistical learning and modeling
(5 weeks)
Probability Theory, Model selection, The curse of Dimensionality, Decision Theory,
Information Theory
Probability distribution: The Gaussian Distribution, Conditional Gaussian distributions,
Marginal Gaussian distributions, Bayes’ theorem for Gaussian variables, Maximum
likelihood for the Gaussian, Mixtures of Gaussians, Nonparametric Methods
Linear model for regression: Linear basis function models; The Bias-Variance
Decomposition
Linear model for classification : Basic Concepts; Discriminant Functions (nonprobabilistic methods); Probabilistic Generative Models; Probabilistic Discriminative
Models
K-means Clustering and GMM & Expectation–Maximization (EM) algorithm, BoostingThe Course Syllabus
Deep Learning
(4 weeks)
Stochastic Gradient Descent, Backpropagation
Feedforward Neural Network
Convolutional Neural Networks
Recurrent Neural Network (LSTM, GRU)
Generative adversarial network (GAN)
Deep learning in NLP (word2vec), CV
(localization) and VQA(cross-media)
Reinforcement learning (1
weeks)
Reinforcement learning: introduction
2018-11-18
深度强化学习综述_兼论计算机围棋的发展
一篇深度强化学习综述,中文的,透彻分析了AlphaGo
摘要: 深度强化学习将深度学习的感知能力和强化学习的决策能力相结合, 可以直接根据输入的图像进行控制, 是一种更接近人类思维方式的人工智能方法. 自提出以来, 深度强化学习在理论和应用方面均取得了显著的成果. 尤其是谷歌深智(DeepMind)团队基于深度强化学习方法研发的计算机围棋“AlphaGo”, 在2016年3月以4:1的大比分战胜了世界围棋顶级选手李世石(Lee Sedol), 成为人工智能历史上一个新里程碑. 为此, 本文综述深度强化学习的发展历程, 兼论计算机围棋的历史, 分析算法特性, 探讨未来的发展趋势和应用前景, 期望能为控制理论与应用新方向的发展提供有价值的参考
2017-10-28
A guide to convolution arithmetic for deep learning
一篇外国大牛写的关于CNN调参的讲解,具体内容见目录:
1 Introduction
1.1 Discrete convolutions . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Pooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2 Convolution arithmetic
2.1 No zero padding, unit strides . . . . . . . . . . . . . . . . . . . . 12
2.2 Zero padding, unit strides . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Half (same) padding . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Full padding . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 No zero padding, non-unit strides . . . . . . . . . . . . . . . . . . 15
2.4 Zero padding, non-unit strides . . . . . . . . . . . . . . . . . . . . 15
3 Pooling arithmetic
4 Transposed convolution arithmetic
4.1 Convolution as a matrix operation . . . . . . . . . . . . . . . . . 19
4.2 Transposed convolution . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 No zero padding, unit strides, transposed . . . . . . . . . . . . . 20
4.4 Zero padding, unit strides, transposed . . . . . . . . . . . . . . . 21
4.4.1 Half (same) padding, transposed . . . . . . . . . . . . . . 21
4.4.2 Full padding, transposed . . . . . . . . . . . . . . . . . . . 21
4.5 No zero padding, non-unit strides, transposed . . . . . . . . . . . 23
4.6 Zero padding, non-unit strides, transposed . . . . . . . . . . . . . 23
2017-10-28
[免费]边干边学——LINUX内核指导
边干边学——LINUX内核指导 浙江大学出版社
和优快云上其他的同名书籍内容都是一样的,但更便宜,只要1分
和优快云上其他的同名书籍内容都是一样的,但更便宜,只要1分
和优快云上其他的同名书籍内容都是一样的,但更便宜,只要1分
2017-09-23
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人