顺序表和链表

线性表

        线性表是一种常见的数据结构,用于存储一组按照顺序排列的元素。线性表中的元素之间存在一对一的关系,即每个元素都有唯一的前驱和后继元素(除了第一个元素和最后一个元素)。

常见的线性表:顺序表、链表、栈、队列、字符串等,线性表在逻辑上是线性结构,也就说是连续的一条直线。但是在物理结构上并不一定是连续的, 线性表在物理上存储时,通常以数组和链式结构的形式存储。   

顺序表(Array List):

静态顺序表:使用定长数组存储元素。

动态顺序表:使用动态开辟的数组存储。

  • 基本原理:顺序表是一种基于数组实现的数据结构,存储在内存中的一块连续的存储空间。
  • 特点
    • 随机访问:可以通过索引快速访问任意位置的元素。
    • 内存占用:是用一段物理地址连续的存储单元依次存储数据元素的线性结构,一般情况下采用数组存储。在数组上完成数据的增删查改。
    • 插入和删除:在中间插入或删除元素时,需要移动其他元素,时间复杂度较高。
  • 适用场景:适合对数据的随机访问较多,元素数量相对固定的情况。
#pragma once

#include <stdio.h>
#include <stdlib.h>

#define N 1000
typedef int SLDataType;

//静态顺序表
//typedef struct SeqList
//{
//	SLDataType a[N];
//	int size;//表示数组中存储了多少个数据
//}SL;

//动态顺序表
typedef struct SeqList
{
	SLDataType* a;// 指向动态开辟的数组
	int size;//表示数组中存储了多少个数据
	int capacity;//数据实际能存数据空间容量
}SL;

void SeqListPrint(const SL* ps);
void SeqListInit(SL* ps);
void SeqListDestory(SL* ps);

void SeqListPushBack(SL* ps, SLDataType x);
void SeqListCheckCapacity(SL* ps);
void SeqListPopBack(SL* ps);
void SeqListPushFront(SL* ps, SLDataType x);
void SeqListPopFron(SL* ps);

int SeqListFind(const SL* ps, SLDataType x); 
void SeqListInsert(SL* ps, int pos, SLDataType x);
void SeqListErase(SL* ps, int pos);

#include "SeqList.h"

void SeqListInit(SL* ps)
{
	ps->a = NULL;
	ps->size = ps->capacity = 0;
}

void SeqListPrint(const SL* ps)
{
	for (int i = 0; i < ps->size; ++i)
	{
		printf("%d ", ps->a[i]);
	}
	printf("\n");
}

void SeqListCheckCapacity(SL* ps)
{
	//若没有空间或空间不足,就扩容
	if (ps->size == ps->capacity)
	{
		int newcapacity = ps->capacity == 0 ? 4 : ps->capacity * 2;
		SLDataType* tmp = (SLDataType*)realloc(ps->a, newcapacity * sizeof(SLDataType));
		if (tmp == NULL)
		{
			printf("realloc fail\n");
			exit(-1);
		}

		ps->a = tmp;
		ps->capacity = newcapacity;
	}
}

void SeqListDestory(SL* ps)
{
	free(ps->a);
	ps->a = NULL;
	ps->capacity = ps->size = 0;
}

void SeqListPushBack(SL* ps, SLDataType x)
{
	SeqListCheckCapacity(ps);
	ps->a[ps->size] = x;
	ps->size++;
}

void SeqListPopBack(SL* ps)
{
	if (ps->size > 0) 
	{
		//ps->a[ps->size - 1] = 0;
		ps->size--;
	}
}

void SeqListPushFront(SL* ps, SLDataType x)
{
	SeqListCheckCapacity(ps);
	//从后往前挪动数据
	int end = ps->size - 1;
	while (end >= 0)
	{
		ps->a[end + 1] = ps->a[end];
		--end;
	}
	ps->a[0] = x;
	ps->size++;
}

void SeqListPopFron(SL* ps)
{
	//从前往前挪动数据
	if (ps->size > 0)
	{
		int begin = 1;
		while (begin < ps->size)
		{
			ps->a[begin - 1] = ps->a[begin];
			++begin;
		}
		ps->size--;
	}
}

int SeqListFind(const SL* ps, SLDataType x)
{
	for (int i = 0; i < ps->size; i++)
	{
		if (ps->a[i] == x)
		{
			return i;
		}
	}

	return -1;
}

void SeqListInsert(SL* ps, int pos, SLDataType x)
{
	SeqListCheckCapacity(ps);
	if (pos < ps->capacity && pos >= 0) 
	{
		for (int i = ps->size - 1; i >= pos; i--)
		{
			ps->a[i + 1] = ps->a[i];
		}
		ps->a[pos] = x;
		ps->size++;
	}	
}

void SeqListErase(SL* ps, int pos)
{
	if (pos < ps->size)
	{
		int c = ps->size - pos;
		while (c--)
		{
			ps->a[pos++] = ps->a[pos + 1];
		}
		ps->size--;
	}	
}

#define _CRT_SECURE_NO_WARNINGS

#include "SeqList.h"

void TestSeqList1()
{
	SL s1;
	SeqListInit(&s1);
	SeqListPushBack(&s1, 1);
	SeqListPushBack(&s1, 2);
	SeqListPushBack(&s1, 3);
	SeqListPushBack(&s1, 4);
	SeqListPushBack(&s1, 5);
	SeqListPushBack(&s1, 6);
	SeqListPrint(&s1);

	SeqListPopBack(&s1);
	SeqListPrint(&s1);

	SeqListDestory(&s1);
}


void TestSeqList2()
{
	SL s1;
	SeqListInit(&s1);
	SeqListPushBack(&s1, 1);
	SeqListPushBack(&s1, 2);
	SeqListPushBack(&s1, 3);
	
	SeqListPushFront(&s1, 6);
	SeqListPrint(&s1);

	SeqListPopFron(&s1);
	SeqListPrint(&s1);
	
	printf("%d\n", SeqListFind(&s1, 3));

	SeqListInsert(&s1, 1, 66);
	SeqListPrint(&s1);

	SeqListErase(&s1, 2);
	SeqListPrint(&s1);

	SeqListDestory(&s1);
}

void TestSeqList3()
{
	SL s1;
	SeqListInit(&s1);

	SeqListPushBack(&s1, 1);
	SeqListPushBack(&s1, 2);
	SeqListPushBack(&s1, 3);

	SeqListPushFront(&s1, 1);
	SeqListPushFront(&s1, 2);
	SeqListPushFront(&s1, 3);
	
	SeqListPrint(&s1);

	SeqListDestory(&s1);
}

void Menu()
{
	printf("*************************\n");
	printf("请选择你的操作:>\n");
	printf("1.头插    2.头删\n");
	printf("3.尾插    4.尾删\n");
	printf("5.查找    6.查增\n");
	printf("7.查删    0.退出\n");
	printf("*************************\n");
}

int MenuTest()
{
	SL s1;
	SeqListInit(&s1);
	int input = 1;
	int data = 0;
	int x = 0;

	while (input)
	{
		Menu();

		scanf("%d", &input);
		if (input == 0)
		{
			printf("退出\n");
			return 0;
		}
		if (input != 4 && input != 2 && !(input > 7)) 
		{
			printf("请输入数值:>");
			scanf("%d", &data);
		}

		switch (input)
		{
		case 1:
			SeqListPushFront(&s1, data);
			break;
		case 2:
			SeqListPopFron(&s1, data);
			break;
		case 3:
			SeqListPushBack(&s1, data);
			break;
		case 4:
			SeqListPopBack(&s1, data);
			break;
		case 5:
			printf("找到下标为:%d\n", SeqListFind(&s1, data));
			goto end;
			break;
		case 6:
			printf("请输入要插入的下标:>");
			scanf("%d", &x);
			SeqListInsert(&s1, x, data);
			break;
		case 7:
			SeqListErase(&s1, data);
			break;
		default:
			printf("输入错误,请重新输入!\n");
		}

		SeqListPrint(&s1);

	end:;
	}
	SeqListDestory(&s1);
}

int main()
{

	//TestSeqList1();
	//TestSeqList2();
	//TestSeqList3();

	MenuTest();

	return 0;
}

链表(Linked List):

  • 基本原理:链表是一种由节点组成的数据结构,每个节点包含数据和指向下一个节点的指针。
  • 特点
    • 随机访问:无法直接随机访问元素需要从头节点开始逐个遍历。
    • 内存占用:灵活使用内存,节点在内存中可以不连续存储。
    • 插入和删除:插入和删除操作效率高不需要移动大量元素。
  • 适用场景:适合频繁进行插入和删除操作不需要随机访问元素的情况。
#pragma once

#include <stdio.h>
#include <stdlib.h>

typedef int SLTDataType;

typedef struct SListNode
{
	SLTDataType data;
	struct SListNode* next;
}SLTNode;

void SListPrint(SLTNode* phead);
void SListPushBack(SLTNode** phead, SLTDataType x);
void SListPushFront(SLTNode** phead, SLTDataType x);
void SListPopBack(SLTNode** phead);
void SListPopFront(SLTNode** phead);
SLTNode* SListFind(const SLTNode* phead, SLTDataType x);
void SListInsert(SLTNode** phead, SLTNode* pos, SLTDataType x);
void SListInsertAfter(SLTNode* pos, SLTDataType x);
void SListErase(SLTNode** phead, SLTNode* pos);
void SListEraseAfter(SLTNode* pos);
void SListDestory(SLTNode** phead);

#include "SList.h"

SLTNode* BuyListNode(SLTDataType x)
{
	SLTNode* newnode = (SLTNode*)malloc(sizeof(SLTNode));

	if (newnode == NULL)
	{
		printf("malloc fail\n");
		exit(-1);
	}

	newnode->data = x;
	newnode->next = NULL;

	return newnode;
}


void SListPrint(SLTNode* phead)
{
	SLTNode* cur = phead;
	while (cur != NULL)
	{
		printf("%d->", cur->data);
		cur = cur->next;
	}
	printf("NULL");
}

void SListPushBack(SLTNode** phead, SLTDataType x)
{
	SLTNode* newnode = BuyListNode(x);

	if (*phead == NULL)
	{
		*phead = newnode;
	}
	else
	{
		//找到尾结点
		SLTNode* tail = *phead;
		while (tail->next != NULL)
		{
			tail = tail->next;
		}

		tail->next = newnode;
	}
	
}

void SListPushFront(SLTNode** phead, SLTDataType x)
{
	SLTNode* newnode = BuyListNode(x);
	newnode->next = *phead;
	*phead = newnode;
}

void SListPopBack(SLTNode** phead)
{
	if (*phead == NULL)
	{
		return;
	}
	if ((*phead)->next == NULL)
	{
		free(*phead);
		*phead = NULL;
	}
	else
	{
		//找到尾结点
		SLTNode* tail = *phead;
		while (tail->next->next)
		{
			tail = tail->next;
		}

		free(tail->next);
		tail->next = NULL;
	}
	
}

void SListPopFront(SLTNode** phead)
{
	if (*phead) 
	{
		SLTNode* next = (*phead)->next;
		free(*phead);
		*phead = next;
	}
}

SLTNode* SListFind(const SLTNode* phead, SLTDataType x)
{
	SLTNode* cur = phead;
	while (cur)
	{
		if (cur->data == x)
		{
			return cur;
		}
		else
		{
			cur = cur->next;
		}
	}
	return NULL;
}

void SListInsert(SLTNode** phead, SLTNode* pos, SLTDataType x)
{
	SLTNode* newnode = BuyListNode(x);
	if (*phead == pos)
	{
		newnode->next = *phead;
		*phead = newnode;
	}
	else
	{
		
		SLTNode* posPrev = *phead;
		while (posPrev->next != pos)
		{
			posPrev = posPrev->next;
		}

		posPrev->next = newnode;
		newnode->next = pos;
	}
	
}

void SListInsertAfter(SLTNode* pos, SLTDataType x) 
{
	SLTNode* newnode = BuyListNode(x);
	newnode->next = pos->next;
	pos->next = newnode;
}

void SListErase(SLTNode** phead, SLTNode* pos)
{
	if (*phead == pos)
	{
		*phead = pos->next;
		free(pos);
	}
	else
	{
		SLTNode* prev = *phead;
		while (prev->next != pos)
		{
			prev = prev->next;
		}

		prev->next = pos->next;
		free(pos);
	}
}

void SListEraseAfter(SLTNode* pos) 
{
	SLTNode* next = pos->next;
	pos->next = next->next;
	free(next);
}

void SListDestory(SLTNode** phead)
{
	SLTNode* cur = *phead;
	while (cur)
	{
		SLTNode* next = cur->next;
		free(cur);
		cur = next;
	}

	*phead = NULL;
}
#pragma once

#include <stdio.h>
#include <stdlib.h>

typedef int LTDataType;

typedef struct ListNode
{
	LTDataType data;
	struct ListNode* next;
	struct ListNode* prev;
}LTNode;

LTNode* ListInit();
void ListPrint(const LTNode* phead);
void ListPushBack(LTNode* phead, LTDataType x);
void ListPopBack(LTNode* phead);
void ListPushFront(LTNode* phead, LTDataType x);
void ListPopFront(LTNode* phead);
LTNode* ListFind(const LTNode* phead, LTDataType x);
void ListInsert(LTNode* pos, LTDataType x);
void ListErase(LTNode* pos);
void ListDestroy(LTNode* phead);

#include "List.h"

LTNode* ListInit()
{
	LTNode* phead = (LTNode*)malloc(sizeof(LTNode));
	phead->next = phead;
	phead->prev = phead;
	return phead;
}

void ListPrint(const LTNode* phead)
{
	printf("\n");
	if (phead)
	{
		LTNode* cur = phead->next;
		while (cur != phead)
		{
			printf("%d->", cur->data);
			cur = cur->next;
		}
		printf("NULL");
	}
}

void ListPushBack(LTNode* phead, LTDataType x)
{
	ListInsert(phead,x);
}


void ListPopBack(LTNode* phead) 
{
	if (phead->next != phead)
	{
		LTNode* tail = phead->prev;

		phead->prev = tail->prev;
		tail->prev->next = phead;
		free(tail);
		tail = NULL;
	}
}

void ListPushFront(LTNode* phead, LTDataType x)
{
	ListInsert(phead->next, x);	
}

void ListPopFront(LTNode* phead)
{
	if (phead->next != phead)
	{
		LTNode* next = phead->next;

		phead->next = next->next;
		next->next->prev = phead;
		free(next);
		next = NULL;
	}
}

LTNode* ListFind(const LTNode* phead, LTDataType x)
{
	LTNode* cur = phead->next;
	while (cur != phead)
	{
		if (cur->data == x)
		{
			return cur;
		}
		cur = cur->next;
	}
	return NULL;
}

void ListInsert(LTNode* pos, LTDataType x)
{
	LTNode* posPrev = pos->prev;
	LTNode* newnode = (LTNode*)malloc(sizeof(LTNode));
	newnode->data = x;

	newnode->next = pos;
	newnode->prev = posPrev;

	posPrev->next = newnode;
	pos->prev = newnode;
	
}

void ListErase(LTNode* pos)
{
	if (pos)
	{
		LTNode* posPrev = pos->prev;
		posPrev->next = pos->next;
		pos->next->prev = posPrev;

		free(pos);
		pos = NULL;
	}

}

void ListDestroy(LTNode* phead)
{
	LTNode* cur = phead->next;
	while (cur != phead)
	{
		LTNode* next = cur->next;
		free(cur);
		cur = next;
	}
	free(phead);
	phead = NULL;
}

链表的中间结点

        要找到链表的中间节点,可以使用快慢指针技术。这种方法使用两个指针,一个指针每次移动一个节点,另一个指针每次移动两个节点。当快指针到达链表末尾时,慢指针将指向链表的中间节点。

#include <stdio.h>
#include <stdlib.h>

// 定义链表节点结构
struct Node {
    int data;
    struct Node* next;
};

// 寻找链表的中间节点
struct Node* findMiddleNode(struct Node* head) {
    struct Node *slow_ptr = head;
    struct Node *fast_ptr = head;

    while (fast_ptr != NULL && fast_ptr->next != NULL) {
        slow_ptr = slow_ptr->next;
        fast_ptr = fast_ptr->next->next;
    }

    return slow_ptr;
}

// 创建新节点
struct Node* createNode(int data) {
    struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));
    newNode->data = data;
    newNode->next = NULL;
    return newNode;
}

int main() {
    // 创建链表:1 -> 2 -> 3 -> 4 -> 5
    struct Node* head = createNode(1);
    head->next = createNode(2);
    head->next->next = createNode(3);
    head->next->next->next = createNode(4);
    head->next->next->next->next = createNode(5);

    // 寻找中间节点
    struct Node* middleNode = findMiddleNode(head);

    // 输出中间节点的值
    printf("Middle node value: %d\n", middleNode->data);

    return 0;
}

如果链表中节点数为偶数,则此方法将返回中间两个节点中的第二个节点。

环形队列

        环形队列是一种特殊形式的队列,它通过在队列的尾部到达数组的末尾时将其连接到数组的开头,形成一个环来实现循环的效果。这样可以更有效地利用存储空间,避免出现队列满时依然有空闲空间无法利用的情况。

下面是一个简单的环形队列的实现示例,使用数组来存储队列元素:

#include <stdio.h>

#define MAX_SIZE 5

// 定义环形队列结构
typedef struct {
    int front, rear;
    int data[MAX_SIZE];
} CircularQueue;

// 初始化环形队列
void initQueue(CircularQueue *queue) {
    queue->front = 0;
    queue->rear = 0;
}

// 判断队列是否为空
int isEmpty(CircularQueue *queue) {
    return queue->front == queue->rear;
}

// 判断队列是否已满
int isFull(CircularQueue *queue) {
    return (queue->rear + 1) % MAX_SIZE == queue->front;
}

// 入队操作
void enqueue(CircularQueue *queue, int value) {
    if (isFull(queue)) {
        printf("Queue is full. Cannot enqueue.\n");
    } else {
        queue->rear = (queue->rear + 1) % MAX_SIZE;
        queue->data[queue->rear] = value;
    }
}

// 出队操作
int dequeue(CircularQueue *queue) {
    if (isEmpty(queue)) {
        printf("Queue is empty. Cannot dequeue.\n");
        return -1;
    } else {
        queue->front = (queue->front + 1) % MAX_SIZE;
        return queue->data[queue->front];
    }
}

int main() {
    CircularQueue queue;
    initQueue(&queue);

    enqueue(&queue, 1);
    enqueue(&queue, 2);
    enqueue(&queue, 3);

    printf("Dequeued element: %d\n", dequeue(&queue));
    printf("Dequeued element: %d\n", dequeue(&queue));

    enqueue(&queue, 4);
    enqueue(&queue, 5);
    enqueue(&queue, 6);

    printf("Dequeued element: %d\n", dequeue(&queue));
    printf("Dequeued element: %d\n", dequeue(&queue));
    printf("Dequeued element: %d\n", dequeue(&queue));

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值