496. Next Greater Element I

本文介绍了一个算法问题,即如何找出数组nums1中每个元素在数组nums2中的下一个更大的元素。通过遍历查找的方式实现了这一目标,并给出了具体的Java实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Statement

You are given two arrays (without duplicates) nums1 and nums2 where nums1’s elements are subset of nums2. Find all the next greater numbers for nums1’s elements in the corresponding places of nums2.

The Next Greater Number of a number x in nums1 is the first greater number to its right in nums2. If it does not exist, output -1 for this number.

Example 1:

Input: nums1 = [4,1,2], nums2 = [1,3,4,2].
Output: [-1,3,-1]
Explanation:
    For number 4 in the first array, you cannot find the next greater number for it in the second array, so output -1.
    For number 1 in the first array, the next greater number for it in the second array is 3.
    For number 2 in the first array, there is no next greater number for it in the second array, so output -1.

Example 2:

Input: nums1 = [2,4], nums2 = [1,2,3,4].
Output: [3,-1]
Explanation:
    For number 2 in the first array, the next greater number for it in the second array is 3.
    For number 4 in the first array, there is no next greater number for it in the second array, so output -1.

Note:
1. All elements in nums1 and nums2 are unique.
2. The length of both nums1 and nums2 would not exceed 1000.

Thinking

题目的意思是给出两个数组(第一个数组是第二个数组的子串),需要找到num1的每一个元素在num2中对应的位置的右面第一个比他大的元素,不存在则返回-1。

Solution

class Solution {
   public int[] nextGreaterElement(int[] nums1, int[] nums2) {
        int[] buff;
        buff = new int[nums1.length];
        int len_num2 = nums2.length;
        for(int i = 0; i < nums1.length;i++){
            int tmp = 0;
            int loc = find_loc(nums2,nums1[i]);
            if(loc != len_num2){
                for(int j = loc;j < len_num2;j++){
                    if(nums2[j] > nums1[i]){
                        tmp = 1;
                        buff[i] = nums2[j];
                    }
                    if(tmp == 1)
                        break;
                }
                if(tmp == 0)
                    buff[i] = -1;
            }
        }
        return buff;
    }
    public int find_loc(int[] num,int m){
        for(int i = 0;i < num.length;i++){
            if(num[i] == m)
                return i;
        }
        return 0;
    }  
}

基于Swin Transformer与ASPP模块的图像分类系统设计与实现 本文介绍了一种结合Swin Transformer与空洞空间金字塔池化(ASPP)模块的高效图像分类系统。该系统通过融合Transformer的全局建模能力和ASPP的多尺度特征提取优势,显著提升了模型在复杂场景下的分类性能。 模型架构创新 系统核心采用Swin Transformer作为骨干网络,其层次化窗口注意力机制能高效捕获长距离依赖关系。在特征提取阶段,创新性地引入ASPP模块,通过并行空洞卷积(膨胀率6/12/18)和全局平均池化分支,实现多尺度上下文信息融合。ASPP输出经1x1卷积降维后与原始特征拼接,有效增强了模型对物体尺寸变化的鲁棒性。 训练优化策略 训练流程采用Adam优化器(学习率0.0001)和交叉熵损失函数,支持多GPU并行训练。系统实现了完整的评估指标体系,包括准确率、精确率、召回率、特异度和F1分数等6项指标,并通过动态曲线可视化模块实时监控训练过程。采用早停机制保存最佳模型,验证集准确率提升可达3.2%。 工程实现亮点 1. 模块化设计:分离数据加载、模型构建和训练流程,支持快速迭代 2. 自动化评估:每轮训练自动生成指标报告和可视化曲线 3. 设备自适应:智能检测CUDA可用性,无缝切换训练设备 4. 中文支持:优化可视化界面的中文显示与负号渲染 实验表明,该系统在224×224分辨率图像分类任务中,仅需2个epoch即可达到92%以上的验证准确率。ASPP模块的引入使小目标识别准确率提升15%,特别适用于医疗影像等需要细粒度分类的场景。未来可通过轻量化改造进一步优化推理速度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值