进阶-第14__深度探秘搜索技术_使用most_fields策略进行cross-fields search弊端大揭秘

探讨了在Elasticsearch中使用most_fields类型进行cross-fields搜索的挑战,包括如何处理多个字段中的标识符,如人名和地址,以及TF/IDF算法在匹配特定term时的局限性。

 

cross-fields搜索,一个唯一标识,跨了多个field。比如一个人,标识,是姓名;一个建筑,它的标识是地址。姓名可以散落在多个field中,比如first_name和last_name中,地址可以散落在country,province,city中。

 

跨多个field搜索一个标识,比如搜索一个人名,或者一个地址,就是cross-fields搜索

 

初步来说,如果要实现,可能用most_fields比较合适。因为best_fields是优先搜索单个field最匹配的结果,cross-fields本身就不是一个field的问题了。

插入测试数据

POST /forum/article/_bulk

{ "update": { "_id": "1"} }

{ "doc" : {"author_first_name" : "Peter", "author_last_name" : "Smith"} }

{ "update": { "_id": "2"} }

{ "doc" : {"author_first_name" : "Smith", "author_last_name" : "Williams"} }

{ "update": { "_id": "3"} }

{ "doc" : {"author_first_name" : "Jack", "author_last_name" : "Ma"} }

{ "update": { "_id": "4"} }

{ "doc" : {"author_first_name" : "Robbin", "author_last_name" : "Li"} }

{ "update": { "_id": "5"} }

{ "doc" : {"author_first_name" : "Tonny", "author_last_name" : "Peter Smith"} }//这个是最期望排到最前面的

 

 

Multi_match mos_fields 搜索

GET /forum/article/_search

{

  "query": {

    "multi_match": {

      "query":       "Peter Smith",

      "type":        "most_fields",

      "fields":      [ "author_first_name", "author_last_name" ]

    }

  }

}

搜索结果

{

  "took": 1,

  "timed_out": false,

  "_shards": {

    "total": 5,

    "successful": 5,

    "failed": 0

  },

  "hits": {

    "total": 3,

    "max_score": 0.6931472,

    "hits": [

      {

        "_index": "forum",

        "_type": "article",

        "_id": "2",

        "_score": 0.6931472,

        "_source": {

          "articleID": "KDKE-B-9947-#kL5",

          "userID": 1,

          "hidden": false,

          "postDate": "2017-01-02",

          "tag": [

            "java"

          ],

          "tag_cnt": 1,

          "view_cnt": 50,

          "title": "this is java blog",

          "content": "i think java is the best programming language",

          "sub_title": "learned a lot of course",

          "author_first_name": "Smith",

          "author_last_name": "Williams"

        }

      },

      {

        "_index": "forum",

        "_type": "article",

        "_id": "1",

        "_score": 0.5753642,

        "_source": {

          "articleID": "XHDK-A-1293-#fJ3",

          "userID": 1,

          "hidden": false,

          "postDate": "2017-01-01",

          "tag": [

            "java",

            "hadoop"

          ],

          "tag_cnt": 2,

          "view_cnt": 30,

          "title": "this is java and elasticsearch blog",

          "content": "i like to write best elasticsearch article",

          "sub_title": "learning more courses",

          "author_first_name": "Peter",

          "author_last_name": "Smith"

        }

      },

      {

        "_index": "forum",

        "_type": "article",

        "_id": "5",

        "_score": 0.51623213,

        "_source": {

          "articleID": "DHJK-B-1395-#Ky5",

          "userID": 3,

          "hidden": false,

          "postDate": "2017-03-01",

          "tag": [

            "elasticsearch"

          ],

          "tag_cnt": 1,

          "view_cnt": 10,

          "title": "this is spark blog",

          "content": "spark is best big data solution based on scala ,an programming language similar to java",

          "sub_title": "haha, hello world",

          "author_first_name": "Tonny",

          "author_last_name": "Peter Smith"

        }

      }

    ]

  }

}

 

Peter Smith,匹配author_first_name,匹配到了Smith,这时候它的分数很高,为什么啊???

因为IDF分数高,IDF分数要高,那么这个匹配到的term(Smith),在所有doc中的出现频率要低,author_first_name field中,Smith就出现过1次

Peter Smith这个人,doc 1,Smith在author_last_name中,但是author_last_name出现了两次Smith,所以导致doc 1的IDF分数较低

 

不要有过多的疑问,一定是这样吗?

 

问题1:只是找到尽可能多的field匹配的doc,而不是某个field完全匹配的doc

 

问题2:most_fields,没办法用minimum_should_match去掉长尾数据,就是匹配的特别少的结果

 

问题3:TF/IDF算法,比如Peter Smith和Smith Williams,搜索Peter Smith的时候,由于first_name中很少有Smith的,所以query在所有document中的频率很低,得到的分数很高,可能Smith Williams反而会排在Peter Smith前面

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值