#!/usr/bin/env python
# -*- coding:utf-8 -*-
# Author: Jia ShiLin
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
from keras.utils import to_categorical, np_utils
from keras.callbacks import Callback
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense
# data
(x_train, y_train), (x_val, y_val) = mnist.load_data()
# 显示每个标签的事例,并输出对显示每个标签的计数
unique_labels = set(y_train)
plt.figure(figsize=(12, 10))
i = 1
for label in unique_labels:
image = x_train[y_train.tolist().index(label)]
#plt.subplots(10, 10, i)
plt.axis('off')
plt.title('{0}:({1})'.format(label, y_train.tolist().count(label)))
i += 1
_ = plt.imshow(image, cmap='g
编写自己的回调函数
最新推荐文章于 2020-11-12 15:05:55 发布