一、普通饼图
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.family']='Times New Roman,SimHei'# 设置字体族,中文为SimHei,英文为Times New Roman
plt.style.use('fivethirtyeight')
data = [2,4,5,1,6]
labels = ['A类','B类','C类','D类','E类']
fig, ax = plt.subplots(1, 1, figsize=(6, 6)) # 设置图形大小
wedges, texts, autotexts = ax.pie(
data,
labels=labels,
autopct='%1.1f%%',
textprops=dict(color='k',size=20),
pctdistance=0.6, # 控制百分比的位置
labeldistance=1.1 # 控制标签的位置
)
ax.set_title('饼图标题',fontsize=20)
plt.show()
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.family']='Times New Roman,SimHei'# 设置字体族,中文为SimHei,英文为Times New Roman
plt.style.use('fivethirtyeight')
data = [2,4,5,1,6]
labels = ['A类','B类','C类','D类','E类']
fig, ax = plt.subplots(1, 1, figsize=(6, 6)) # 设置图形大小
wedges, texts, autotexts = ax.pie(
data,
autopct='%1.1f%%',
textprops=dict(color='w',size=20)
)
ax.legend(
wedges,
labels,
title="",
prop={'size': 15},
frameon=False,
bbox_to_anchor=(1, 0, 0.5, 1) # 控制图例的位置
)
ax.set_title('饼图标题',fontsize=20)
plt.show()
二、强调某一个模块。
在 ax.pie() 中传入参数 explode=(0.01, 0.05, 0.01, 0.01, 0.01)
, 可以改变间隔
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.family']='Times New Roman,SimHei'# 设置字体族,中文为SimHei,英文为Times New Roman
plt.style.use('fivethirtyeight')
data = [2,4,5,1,6]
labels = ['A类','B类','C类','D类','E类']
explode = (0.01, 0.05, 0.01, 0.01, 0.01)
fig, ax = plt.subplots(1, 1, figsize=(6, 6)) # 设置图形大小
wedges, texts, autotexts = ax.pie(
data,
autopct='%1.1f%%',
explode=explode,
textprops=dict(color='w',size=20)
)
ax.legend(
wedges,
labels,
title="",
prop={'size': 15},
frameon=False,
bbox_to_anchor=(1, 0, 0.5, 1) # 控制图例的位置
)
ax.set_title('饼图标题',fontsize=20)
plt.show()
三、环形饼图
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.family']='Times New Roman,SimHei'# 设置字体族,中文为SimHei,英文为Times New Roman
plt.style.use('fivethirtyeight')
data = [2,4,5,1,6]
labels = ['A类','B类','C类','D类','E类']
explode = (0.01, 0.05, 0.01, 0.01, 0.01)
fig, ax = plt.subplots(1, 1, figsize=(6, 6)) # 设置图形大小
wedges, texts, autotexts = ax.pie(
data,
autopct='%1.1f%%',
explode=explode,
# 设置30%的环形图,间距颜色为白色
wedgeprops=dict(width=0.3, edgecolor='w'),
textprops=dict(color='red',size=20)
)
ax.legend(
wedges,
labels,
title="",
prop={'size': 15},
frameon=False,
bbox_to_anchor=(1, 0, 0.5, 1) # 控制图例的位置
)
ax.set_title('环形饼图',fontsize=20)
plt.show()
四、某一类别再细分类
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.patches import ConnectionPatch
plt.rcParams['font.family']='Times New Roman,SimHei'# 设置字体族,中文为SimHei,英文为Times New Roman
# make figure and assign axis objects
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(9, 5))
fig.subplots_adjust(wspace=0)
# pie chart parameters
data = [.27, .56, .17]
labels = ['A类人', 'B类人', 'C类人']
explode = [0.1, 0, 0]
# rotate so that first wedge is split by the x-axis
angle = -180 * data[0]
wedges, *_ = ax1.pie(data, autopct='%1.1f%%', startangle=angle,
labels=labels, explode=explode, textprops=dict(size=18))
# bar chart parameters
age_ratios = [.33, .54, .07, .06]
age_labels = ['< 35', '35-49', '50-65', '> 65']
bottom = 1
width = .2
# Adding from the top matches the legend.
for j, (height, label) in enumerate(reversed([*zip(age_ratios, age_labels)])):
bottom -= height
bc = ax2.bar(0, height, width, bottom=bottom, color='C0', label=label,
alpha=0.1 + 0.25 * j)
ax2.bar_label(bc, labels=[f"{height:.0%}"], label_type='center')
ax2.set_title('A类人年龄占比')
ax2.legend()
ax2.axis('off') # 关闭柱状图的坐标轴
ax2.set_xlim(- 2.5 * width, 2.5 * width)
# 使用 ConnectionPatch 在两个图直接画线
theta1, theta2 = wedges[0].theta1, wedges[0].theta2
center, r = wedges[0].center, wedges[0].r
bar_height = sum(age_ratios)
# 画上面的连接线线
x = r * np.cos(np.pi / 180 * theta2) + center[0]
y = r * np.sin(np.pi / 180 * theta2) + center[1]
con = ConnectionPatch(xyA=(-width / 2, bar_height), coordsA=ax2.transData,
xyB=(x, y), coordsB=ax1.transData)
con.set_color([0, 0, 0])
con.set_linewidth(3)
ax2.add_artist(con)
# 画下面的连接线线
x = r * np.cos(np.pi / 180 * theta1) + center[0]
y = r * np.sin(np.pi / 180 * theta1) + center[1]
con = ConnectionPatch(xyA=(-width / 2, 0), coordsA=ax2.transData,
xyB=(x, y), coordsB=ax1.transData)
con.set_color([0, 0, 0])
ax2.add_artist(con)
con.set_linewidth(3)
plt.show()
五、多层饼图
import matplotlib.pyplot as plt
import numpy as np
fig, ax = plt.subplots()
size = 0.3 # 圆圈宽度
# 构建数据
vals = np.array([[60., 32.], [37., 40.], [29., 10.]])
data1 = vals.sum(axis=1)
data2 = vals.flatten()
# 制定颜色
cmap = plt.colormaps["tab20c"]
outer_colors = cmap(np.arange(3)*4)
inner_colors = cmap([1, 2, 5, 6, 9, 10])
ax.pie(data1, radius=1, colors=outer_colors,
wedgeprops=dict(width=size, edgecolor='w'))
ax.pie(data2, radius=1-size, colors=inner_colors,
wedgeprops=dict(width=size, edgecolor='w'))
ax.set(aspect="equal", title='多层圆圈饼图')
plt.show()