spark算子-aggregate

本文详细介绍了 Apache Spark 中的 aggregate 函数,该函数允许对 RDD 的每个分区进行聚合操作,并进一步将各分区的结果进行合并。文章通过具体示例展示了如何使用 aggregate 函数,并解释了 seqOp 和 combOp 的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

spark:aggregate

 /**
   * Aggregate the elements of each partition, and then the results for all the partitions, using
   * given combine functions and a neutral "zero value". This function can return a different result
   * type, U, than the type of this RDD, T. Thus, we need one operation for merging a T into an U
   * and one operation for merging two U's, as in scala.TraversableOnce. Both of these functions are
   * allowed to modify and return their first argument instead of creating a new U to avoid memory
   * allocation.
   *
   * @param zeroValue the initial value for the accumulated result of each partition for the
   *                  `seqOp` operator, and also the initial value for the combine results from
   *                  different partitions for the `combOp` operator - this will typically be the
   *                  neutral element (e.g. `Nil` for list concatenation or `0` for summation)
   * @param seqOp an operator used to accumulate results within a partition
   * 在一个partition使用seqop进行计算操作
   * @param combOp an associative operator used to combine results from different partitions
   * 一个联合操作, 从不同的partitions用于combine函数结果。
   */
  def aggregate[U: ClassTag](zeroValue: U)(seqOp: (U, T) => U, combOp: (U, U) => U): U = withScope {
    // Clone the zero value since we will also be serializing it as part of tasks
    var jobResult = Utils.clone(zeroValue, sc.env.serializer.newInstance())
    val cleanSeqOp = sc.clean(seqOp)
    val cleanCombOp = sc.clean(combOp)
    val aggregatePartition = (it: Iterator[T]) => it.aggregate(zeroValue)(cleanSeqOp, cleanCombOp)
    val mergeResult = (index: Int, taskResult: U) => jobResult = combOp(jobResult, taskResult)
    sc.runJob(this, aggregatePartition, mergeResult)
    jobResult
  }

example:


package test
import org.apache.spark.{SparkConf, SparkContext}
class testRdd {
  def anylizeRdd():Unit={
   val spark= new SparkContext(new SparkConf().setMaster("local").setAppName("test"))
rdd2=spark.textFile("file:///Users/Downloads/spark-2.1.1-bin-hadoop2.7/conf/log4j.properties.template")
      val number=rdd2.repartition(10).aggregate(0)((x:Int,y:String)=>{
      //x=0 初始值 表示计算中间值, y为每个分区的每一行string值
        if(y.length>50) x+1
       else x
      },(a:Int,b:Int)=>{ 
      //b表示每一个分区最后计算的值,a表示计算中间值,初始为0
         a+b
      })
      println(number)
  }
}
object  testRdd{
  def main(args: Array[String]): Unit = {
    new testRdd().anylizeRdd()
  }
}

result:

x<50==0
x>50==1
x>50==2
x>50==3
a:0||b:3
x<50==0
x>50==1
x<50==1
x<50==1
a:3||b:1
x>50==1
x>50==2
x>50==3
x>50==4
a:4||b:4
x>50==1
x>50==2
x>50==3
x>50==4
a:8||b:4
x>50==1
x>50==2
x<50==2
x>50==3
a:12||b:3
x>50==1
x<50==1
x>50==2
x<50==2
a:15||b:2
x>50==1
x<50==1
x>50==2
x<50==2
a:17||b:2
x>50==1
x<50==1
x>50==2
x<50==2
a:19||b:2
x<50==0
x<50==0
x<50==0
x>50==1
a:21||b:1
x<50==0
x<50==0
x<50==0
x>50==1
a:22||b:1
23

source anylize

var jobResult = Utils.clone(zeroValue, sc.env.serializer.newInstance())
val aggregatePartition = (it: Iterator[T]) => it.aggregate(zeroValue)(cleanSeqOp, cleanCombOp)
//对每一个分区(iterator)进行聚合操作
    val mergeResult = (index: Int, taskResult: U) => jobResult = combOp(jobResult, taskResult)
    //对每一个分区的计算结果进行聚合操作。

这里写图片描述
总结:seq对分别每一个分区进行聚合操作,comp对所有分区的结果进行聚合操作。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值