线段树
- 维护最长区间长度(HDU - 1540)
#include<iostream>
#include<stdio.h>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn = 50005;
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
int n;
struct node
{
int lmax, rmax, maxx;
node(int _l,int _r,int _m):lmax(_l),rmax(_r),maxx(_m){}
node(){}
}nodes[maxn << 2];
void build(int l, int r, int rt)
{
nodes[rt] = node(r - l + 1, r - l + 1, r - l+1);
if (l == r)return;
int m = l + r >> 1;
build(ls);
build(rs);
}
void pushup(int rt,int ln,int rn)
{
nodes[rt] = node(nodes[rt << 1].lmax, nodes[rt << 1 | 1].rmax, 0);
nodes[rt].maxx = max(nodes[rt << 1].maxx, nodes[rt << 1 | 1].maxx);
nodes[rt].maxx = max(nodes[rt].maxx, nodes[rt << 1].rmax + nodes[rt << 1 | 1].lmax);
if (nodes[rt << 1].lmax == ln)
nodes[rt].lmax = ln + nodes[rt << 1 | 1].lmax;
if (nodes[rt << 1 | 1].rmax == rn)
nodes[rt].rmax = rn + nodes[rt << 1].rmax;
}
void update(int L,int C, int l, int r, int rt)
{
if (l == r)
{
if (C)
nodes[rt] = node(1, 1, 1);
else
nodes[rt] = node(0, 0, 0);
return;
}
int m = l + r >> 1;
if (L <= m)
update(L, C, ls);
else
update(L, C, rs);
pushup(rt,m-l+1,r-m);
}
int query(int L, int l, int r, int rt)
{
if (l == r || nodes[rt].maxx == r - l + 1 || nodes[rt].maxx == 0)
return nodes[rt].maxx;
int m = l + r >> 1;
if (L <= m)
{
if (L >= m - nodes[rt << 1].rmax + 1)
return query(L, ls) + query(m + 1, rs);
else
return query(L, ls);
}
else
{
if (L <= m+1 + nodes[rt << 1 | 1].lmax-1)
return query(L, rs) + query(m, ls);
else
return query(L, rs);
}
}
int main()
{
int n, m;
while (~scanf("%d %d", &n, &m))
{
build(1, n, 1);
char s[3];
int x;
int stack[50005], tot = 0;
for (int i = 1;i <= m;i++)
{
scanf("%s", s);
if (s[0] == 'D')
{
scanf("%d", &x);
stack[++tot] = x;
update(x, 0, 1, n, 1);
}
else if (s[0] == 'Q')
{
scanf("%d", &x);
printf("%d\n", query(x, 1, n, 1));
}
else
{
int tmp = stack[tot--];
update(tmp, 1, 1, n, 1);
}
}
}
return 0;
}
- 扫描线求面积(HDU - 1542)
#include<iostream>
#include<algorithm>
using namespace std;
const int maxx = 100005;
const int maxn = 105;
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
struct line
{
double l, r, h;
int flag;
line(double _l,double _r,double _h,int _f):l(_l),r(_r),h(_h),flag(_f){}
line(){}
bool operator<(const line &b)const
{
return h < b.h;
}
}lines[maxn * 2];
double X[maxn * 2];
struct node
{
int l, r;
double len;
int cnt;
node(int _l, int _r, double _len, int _c) :l(_l), r(_r), len(_len), cnt(_c){}
node(){}
}nodes[maxn << 3];
void build(int l, int r, int rt)
{
nodes[rt] = node(l, r, 0.0, 0);
if (l == r)return;
int m = l + r >> 1;
build(ls);
build(rs);
}
void pushup(int rt)
{
int lidx = nodes[rt].l, ridx = nodes[rt].r+1;
if (nodes[rt].cnt)
nodes[rt].len = X[ridx] - X[lidx];
else if (nodes[rt].l == nodes[rt].r)
nodes[rt].len = 0;
else
nodes[rt].len = nodes[rt << 1].len + nodes[rt << 1 | 1].len;
}
void update(int L, int R, int C, int l, int r,int rt)
{
if (L <= l&&r <= R)
{
nodes[rt].cnt += C;
pushup(rt);
return;
}
int m = l + r >> 1;
if (L <= m)update(L, R, C, ls);
if (R > m)update(L, R, C, rs);
pushup(rt);
}
int main()
{
int n;
int cas = 1;
while (~scanf("%d",&n)&&n)
{
double x1, y1, x2, y2;
int num = 0;
int xnum = 0;
for (int i = 1;i <= n;i++)
{
scanf("%lf %lf %lf %lf", &x1, &y1, &x2, &y2);
lines[num++] = line(x1, x2, y1, 1);
lines[num++] = line(x1, x2, y2, -1);
X[xnum++] = x1;
X[xnum++] = x2;
}
sort(lines, lines + num);
sort(X, X + xnum);
xnum = unique(X, X + xnum)-X;
build(0, xnum - 1, 1);
double ans = 0;
for (int i = 0;i < num-1;i++)
{
int lidx = lower_bound(X, X + xnum, lines[i].l) - X;
int ridx = lower_bound(X, X + xnum, lines[i].r) - X;
ridx--;
update(lidx, ridx, lines[i].flag, 0, xnum - 1, 1);
ans += nodes[1].len*(lines[i + 1].h - lines[i].h);
}
printf("Test case #%d\nTotal explored area: %.2f\n", cas++, ans);
puts("");
}
return 0;
}
二维线段树
- 单点修改,区间查询极值问题(2013长春区域赛G题)
#include<iostream>
#include<algorithm>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define MAXN 805 ///大小
struct seg /// 单点修改,区间查询极值模板
{
int xL, xR, yL, yR, val; /// 查询时xL,xR,yL,yR为边界,修改时(xL,yL)为修改点val为值
int maxv, minv;
int Max[MAXN << 2][MAXN << 2], Min[MAXN << 2][MAXN << 2];
int N, mat[MAXN][MAXN];
void init()
{
maxv = -(1 << 30);
minv = 1 << 30;
}
void PushUp(int xrt, int rt)
{
Max[xrt][rt] = max(Max[xrt][rt << 1], Max[xrt][rt << 1 | 1]);
Min[xrt][rt] = min(Min[xrt][rt << 1], Min[xrt][rt << 1 | 1]);
}
void BuildY(int xrt, int x, int l, int r, int rt)//x=-1的时候相当于BuildX的pushup函数,等于其他的就相当于初始化.同理后面的UpdateY也是一样的道理。
{
int m;
if (l == r)
{
if (x != -1)Max[xrt][rt] = Min[xrt][rt] = mat[x][l];
else
{
Max[xrt][rt] = max(Max[xrt << 1][rt], Max[xrt << 1 | 1][rt]);
Min[xrt][rt] = min(Min[xrt << 1][rt], Min[xrt << 1 | 1][rt]);
}
return;
}
m = l + r >> 1;
BuildY(xrt, x, lson);
BuildY(xrt, x, rson);
PushUp(xrt, rt);
}
void BuildX(int l, int r, int rt)
{
int m;
if (l == r)
{
BuildY(rt, l, 1, N, 1);
return;
}
m = l + r >> 1;
BuildX(lson);
BuildX(rson);
BuildY(rt, -1, 1, N, 1);
}
void UpdateY(int xrt, int x, int l, int r, int rt)
{
int m;
if (l == r)
{
if (x != -1)Max[xrt][rt] = Min[xrt][rt] = val;
else
{
Max[xrt][rt] = max(Max[xrt << 1][rt], Max[xrt << 1 | 1][rt]);
Min[xrt][rt] = min(Min[xrt << 1][rt], Min[xrt << 1 | 1][rt]);
}
return;
}
m = (l + r) >> 1;
if (yL <= m)UpdateY(xrt, x, lson);
else UpdateY(xrt, x, rson);
PushUp(xrt, rt);
}
void UpdateX(int l, int r, int rt)
{
int m;
if (l == r)
{
UpdateY(rt, l, 1, N, 1);
return;
}
m = (l + r) >> 1;
if (xL <= m)UpdateX(lson);
else UpdateX(rson);
UpdateY(rt, -1, 1, N, 1);
}
void QueryY(int xrt, int l, int r, int rt)
{
int m;
if (yL <= l&&yR >= r)
{
minv = min(minv, Min[xrt][rt]);
maxv = max(maxv, Max[xrt][rt]);
return;
}
m = (l + r) >> 1;
if (yL <= m)QueryY(xrt, lson);
if (yR>m)QueryY(xrt, rson);
}
void QueryX(int l, int r, int rt)
{
int m;
if (xL <= l&&xR >= r)
{
QueryY(rt, 1, N, 1);
return;
}
m = (l + r) >> 1;
if (xL <= m)QueryX(lson);
if (xR>m)QueryX(rson);
}
}Seg;
int main()
{
int T;
scanf("%d", &T);
for (int cas = 1;cas <= T;cas++)
{
scanf("%d", &Seg.N);
for (int i = 1;i <= Seg.N;i++)
for (int j = 1;j <= Seg.N;j++)
scanf("%d", &Seg.mat[i][j]);
Seg.BuildX(1, Seg.N, 1);
int Q;
scanf("%d", &Q);
printf("Case #%d:\n", cas);
int L, x, y;
while (Q--)
{
scanf("%d %d %d", &x, &y, &L);
int length = (L - 1) / 2;
Seg.xL = max(1, x - length);
Seg.xR = min(Seg.N, x + length);
Seg.yL = max(1, y - length);
Seg.yR = min(Seg.N, y + length);
Seg.init();
Seg.QueryX(1, Seg.N, 1);
int themax = Seg.maxv;
int themin = Seg.minv;
printf("%d\n", (themax + themin) / 2);
Seg.val = (themax + themin) / 2;
Seg.xL = x;
Seg.yL = y;
Seg.UpdateX(1, Seg.N, 1);
}
}
}