项目场景:
ubuntu16.04
py-faster-rcnn在caffe下运行make报错cudnnStatus_t status = condition;
问题描述:
faster-rcnn在caffe下运行make:报错:
In file included from ./include/caffe/util/device_alternate.hpp:40:0,
from ./include/caffe/common.hpp:19,
from ./include/caffe/blob.hpp:8,
from ./include/caffe/fast_rcnn_layers.hpp:13,
from src/caffe/layers/smooth_L1_loss_layer.cpp:8:
./include/caffe/util/cudnn.hpp: In function ‘const char* cudnnGetErrorString(cudnnStatus_t)’:
./include/caffe/util/cudnn.hpp:21:10: warning: enumeration value ‘CUDNN_STATUS_RUNTIME_PREREQUISITE_MISSING’ not handled in switch [-Wswitch]
switch (status) {
^
./include/caffe/util/cudnn.hpp:21:10: warning: enumeration value ‘CUDNN_STATUS_RUNTIME_IN_PROGRESS’ not handled in switch [-Wswitch]
./include/caffe/util/cudnn.hpp:21:10: warning: enumeration value ‘CUDNN_STATUS_RUNTIME_FP_OVERFLOW’ not handled in switch [-Wswitch]
./include/caffe/util/cudnn.hpp: In function ‘void caffe::cudnn::setConvolutionDesc(cudnnConvolutionStruct**, cudnnTensorDescriptor_t, cudnnFilterDescriptor_t, int, int, int, int)’:
./include/caffe/util/cudnn.hpp:108:70: error: too few arguments to function ‘cudnnStatus_t cudnnSetConvolution2dDescriptor(cudnnConvolutionDescriptor_t, int, int, int, int, int, int, cudnnConvolutionMode_t, cudnnDataType_t)’
pad_h, pad_w, stride_h, stride_w, 1, 1, CUDNN_CROSS_CORRELATION));
^
./include/caffe/util/cudnn.hpp:15:28: note: in definition of macro ‘CUDNN_CHECK’
cudnnStatus_t status = condition; \
^
In file included from ./include/caffe/util/cudnn.hpp:5:0,
from ./include/caffe/util/device_alternate.hpp:40,
from ./include/caffe/common.hpp:19,
from ./include/caffe/blob.hpp:8,
from ./include/caffe/fast_rcnn_layers.hpp:13,
from src/caffe/layers/smooth_L1_loss_layer.cpp:8:
/usr/local/cuda/include/cudnn.h:537:27: note: declared here
cudnnStatus_t CUDNNWINAPI cudnnSetConvolution2dDescriptor( cudnnConvolutionDescriptor_t convDesc,
^
In file included from ./include/caffe/util/device_alternate.hpp:40:0,
from ./include/caffe/common.hpp:19,
from ./include/caffe/blob.hpp:8,
from ./include/caffe/fast_rcnn_layers.hpp:13,
from src/caffe/layers/smooth_L1_loss_layer.cpp:8:
./include/caffe/util/cudnn.hpp: In function ‘void caffe::cudnn::createPoolingDesc(cudnnPoolingStruct**, caffe::PoolingParameter_PoolMethod, cudnnPoolingMode_t*, int, int, int, int, int, int)’:
./include/caffe/util/cudnn.hpp:127:41: error: too few arguments to function ‘cudnnStatus_t cudnnSetPooling2dDescriptor(cudnnPoolingDescriptor_t, cudnnPoolingMode_t, cudnnNanPropagation_t, int, int, int, int, int, int)’
pad_h, pad_w, stride_h, stride_w));
^
./include/caffe/util/cudnn.hpp:15:28: note: in definition of macro ‘CUDNN_CHECK’
cudnnStatus_t status = condition; \
^
In file included from ./include/caffe/util/cudnn.hpp:5:0,
from ./include/caffe/util/device_alternate.hpp:40,
from ./include/caffe/common.hpp:19,
from ./include/caffe/blob.hpp:8,
from ./include/caffe/fast_rcnn_layers.hpp:13,
from src/caffe/layers/smooth_L1_loss_layer.cpp:8:
/usr/local/cuda/include/cudnn.h:1031:27: note: declared here
cudnnStatus_t CUDNNWINAPI cudnnSetPooling2dDescriptor(
原因分析:
cudnn的版本和caffe的版本有冲突:
解决方案:
解决办法:
把CAFFEROOT/src/caffe/util/,把下面命令行的目录改成自己的caffe和py-faster-rcnn目录
sudo cp -r /home/lijing/caffe/src/caffe/util/cudnn* /home/lijing/py-faster-rcnn/caffe-fast-rcnn/src/caffe/util/
CAFFEROOT/src/caffe/layers/,把下面命令行的目录改成自己的caffe和py-faster-rcnn目录
sudo cp -r /home/lijing/caffe/src/caffe/layers/cudnn* /home/lijing/py-faster-rcnn/caffe-fast-rcnn/src/caffe/layers/
CAFFEROOT/include/caffe/util/,把下面命令行的目录改成自己的caffe和py-faster-rcnn目录
sudo cp -r /home/lijing/caffe/include/caffe/util/cudnn* /home/lijing/py-faster-rcnn/caffe-fast-rcnn/include/caffe/util/
CAFFEROOT/include/caffe/layers/,把下面命令行的目录改成自己的caffe和py-faster-rcnn目录
sudo cp -r /home/lijing/caffe/include/caffe/layers/cudnn* /home/lijing/py-faster-rcnn/caffe-fast-rcnn/include/caffe/layers
这四个文件夹里面 所有cudnn开头的文件 用 之前可以编译通过的caffe中的cudnn中的文件 代替,就没问题啦。
本文解决了py-faster-rcnn在使用特定版本的caffe时出现的编译错误问题,主要错误涉及cudnn版本不兼容导致的函数参数数量不符等问题。通过替换相关cudnn文件到兼容版本,成功解决了编译错误。
5612

被折叠的 条评论
为什么被折叠?



