The Cartesian coordinate system is set in the sky. There you can see n stars, the i-th has coordinates (xi, yi), a maximum brightness c, equal for all stars, and an initial brightness si (0 ≤ si ≤ c).
Over time the stars twinkle. At moment 0 the i-th star has brightness si. Let at moment t some star has brightness x. Then at moment (t + 1) this star will have brightness x + 1, if x + 1 ≤ c, and 0, otherwise.
You want to look at the sky q times. In the i-th time you will look at the moment ti and you will see a rectangle with sides parallel to the coordinate axes, the lower left corner has coordinates (x1i, y1i) and the upper right — (x2i, y2i). For each view, you want to know the total brightness of the stars lying in the viewed rectangle.
A star lies in a rectangle if it lies on its border or lies strictly inside it.
The first line contains three integers n, q, c (1 ≤ n, q ≤ 105, 1 ≤ c ≤ 10) — the number of the stars, the number of the views and the maximum brightness of the stars.
The next n lines contain the stars description. The i-th from these lines contains three integers xi, yi, si (1 ≤ xi, yi ≤ 100, 0 ≤ si ≤ c ≤ 10) — the coordinates of i-th star and its initial brightness.
The next q lines contain the views description. The i-th from these lines contains five integers ti, x1i, y1i, x2i, y2i (0 ≤ ti ≤ 109, 1 ≤ x1i < x2i ≤ 100, 1 ≤ y1i < y2i ≤ 100) — the moment of the i-th view and the coordinates of the viewed rectangle.
For each view print the total brightness of the viewed stars.
2 3 3 1 1 1 3 2 0 2 1 1 2 2 0 2 1 4 5 5 1 1 5 5
3 0 3
3 4 5 1 1 2 2 3 0 3 3 1 0 1 1 100 100 1 2 2 4 4 2 2 1 4 7 1 50 50 51 51
3 3 5 0
Let's consider the first example.
At the first view, you can see only the first star. At moment 2 its brightness is 3, so the answer is 3.
At the second view, you can see only the second star. At moment 0 its brightness is 0, so the answer is 0.
At the third view, you can see both stars. At moment 5 brightness of the first is 2, and brightness of the second is 1, so the answer is 3.
题目大意:在一个二维坐标中存在着一些星星,星星的闪亮度每隔一秒增加1,到达c后变为零重新增加,有一个人在某个时刻观察矩形范围内的天空,要求输出这个矩形内的闪亮度
解题思路:这道题的数据导致没有办法通过暴力枚举的方式解决,所以只能使用前缀和的思想去解决,考虑到在不同时刻的闪亮度不同,所以要建造一个三维的数组,然后求出前缀和,通过给的观察的矩形求出
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <cmath>
#include <cstdlib>
#include <ctime>
using namespace std;
typedef long long LL;
int n,q,c,i,t,xx,yy,x,y,j,k;
int tu[15][105][105],a[15][105][105];
struct point
{
int x,y,k;
}star[100005];
int main()
{
cin>>n>>q>>c;
for(i=1;i<=n;i++)
{
cin>>star[i].x>>star[i].y>>star[i].k;
tu[0][star[i].x][star[i].y]+=star[i].k;
}
for(i=1;i<=c;i++)
{
for(j=1;j<=n;j++)
{
star[j].k++;
tu[i][star[j].x][star[j].y]+=star[j].k%(c+1);
}
}
for(i=0;i<=c;i++)
{
for(j=1;j<=100;j++)
{
for(k=1;k<=100;k++)
{
a[i][j][k]+=tu[i][j][k]+a[i][j][k-1];
}
}
for(j=1;j<=100;j++)
{
for(k=1;k<=100;k++)
{
a[i][j][k]+=a[i][j-1][k];
}
}
}
while(q--)
{
cin>>t>>x>>y>>xx>>yy;
t%=(c+1);
cout<<a[t][xx][yy]-a[t][x-1][yy]-a[t][xx][y-1]+a[t][x-1][y-1]<<endl;
}
return 0;
}