1.wordcount。
import java.io.IOException;
import java.util.Iterator;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class Mai {
public Mai(){}
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Configuration conf=new Configuration();
String[] otherArgs=(new GenericOptionsParser(conf,args)).getRemainingArgs();
if(otherArgs.length < 2) {
System.err.println("Usage: wordcount <in> [<in>...] <out>");
System.exit(2);
}
Job job=Job.getInstance(conf,"wordcount");
//指定jobr任务jar包位置
job.setJarByClass(Mai.class);
//指定map,reduce,类
job.setMapperClass(Mai.MyMapper.class);
job.setReducerClass(Mai.MyReduce.class);
//指定reduce输出类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
//指定输入数据路径
for (int i = 0; i <otherArgs.length-1 ; i++) {
FileInputFormat.setInputPaths(job,new Path(otherArgs[i]));
}
//指定输出数据目录
FileOutputFormat.setOutputPath(job,new Path(otherArgs[otherArgs.length-1]));
//提交
System.exit(job.waitForCompletion(true)?0:1);
}
//定义map的输入输出类型
public static class MyMapper extends Mapper<Object,Text,Text,IntWritable>{
private static final IntWritable one = new IntWritable(1);//Hadoop提供的数据类型序列化时效率高
private Text word = new Text();
public MyMapper() {
}
//重写map方法
public void map(Object key, Text value, Mapper<Object, Text, Text, IntWritable>.Context context) throws IOException, InterruptedException {
//切分单词
StringTokenizer itr = new StringTokenizer(value.toString());
while(itr.hasMoreTokens()) {
this.word.set(itr.nextToken());
context.write(this.word, one);
}
}
}
//定义reduce的输入输出类型
public static class MyReduce extends Reducer<Text,IntWritable,Text,IntWritable>{
private IntWritable result = new IntWritable();
public MyReduce() {
}
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
IntWritable val;
for(Iterator var5 = values.iterator(); var5.hasNext(); sum += val.get()) {
val = (IntWritable)var5.next();
}
/* for(Iterable i:values){
sum+=values.get();
}*/
this.result.set(sum);
context.write(key, this.result);
}
}
}
Maven依赖
<dependencies>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.25</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.12</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>3.1.0</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>3.1.0</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-core</artifactId>
<version>3.1.0</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-jobclient</artifactId>
<version>3.1.0</version>
</dependency>
<dependency>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version>1.2.17</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>1.7</source>
<target>1.7</target>
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-jar-plugin</artifactId>
<configuration>
<archive>
<manifest>
<addClasspath>true</addClasspath>
<useUniqueVersions>false</useUniqueVersions>
<classpathPrefix>lib/</classpathPrefix>
<mainClass>com.test.Mai</mainClass>
</manifest>
</archive>
</configuration>
</plugin>
</plugins>
</build>
提交集群运行
hadoop jar ./programe.jar WordCount /input /output0
运行Hadoop自带word count
hadoop jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.0.jar wordcount /input /output1
2:流量统计:新规范
map
import hadoop.mapreduce.serializable.MySerializable;
import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class MyMap extends Mapper<LongWritable,Text,Text,MySerializable> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line=value.toString();
String[] fields=line.split(" ");
String name=fields[0];
long up= Long.parseLong(fields[1]);
long down= Long.parseLong(fields[2]);
context.write(new Text(name),new MySerializable(name,up,down));
}
}
reduce:
import hadoop.mapreduce.serializable.MySerializable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class MyRecune extends Reducer<Text,MySerializable,Text,MySerializable> {
@Override
protected void reduce(Text key, Iterable<MySerializable> values, Context context) throws IOException, InterruptedException {
long up_counter=0;
long down_counter=0;
for (MySerializable i:values){
up_counter+=i.getUp();
down_counter+=i.getDown();
}
context.write(key,new MySerializable(key.toString(),up_counter,down_counter));
}
}
主类:
import hadoop.mapreduce.serializable.MySerializable;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class PhoneRunner extends Configured implements Tool {
@Override
public int run(String[] strings) throws Exception {
Configuration configuration=new Configuration();
Job job=Job.getInstance(configuration);
job.setJarByClass(PhoneRunner.class);
job.setMapperClass(MyMap.class);
job.setReducerClass(MyRecune.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(MySerializable.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(MySerializable.class);
FileInputFormat.setInputPaths(job,new Path(strings[0]));
FileOutputFormat.setOutputPath(job,new Path(strings[1]));
return job.waitForCompletion(true)?0:1;
}
public static void main(String[] args) throws Exception {
int run=ToolRunner.run(new Configuration(),new PhoneRunner(),args);
System.exit(run);
}
}