Array Nesting
题目描述:
A zero-indexed array A consisting of N different integers is given. The array contains all integers in the range [0, N - 1].
Sets S[K] for 0 <= K < N are defined as follows:
S[K] = { A[K], A[A[K]], A[A[A[K]]], ... }.
Sets S[K] are finite for each K and should NOT contain duplicates.
Write a function that given an array A consisting of N integers, return the size of the largest set S[K] for this array.
Example 1:
Input: A = [5,4,0,3,1,6,2] Output: 4 Explanation: A[0] = 5, A[1] = 4, A[2] = 0, A[3] = 3, A[4] = 1, A[5] = 6, A[6] = 2.
One of the longest S[K]: S[0] = {A[0], A[5], A[6], A[2]} = {5, 6, 2, 0}
Note:
- N is an integer within the range [1, 20,000].
- The elements of A are all distinct.
- Each element of array A is an integer within the range [0, N-1].
题目大意:
给定一个数组nums。题目要我们求出新的一个数组S。求S的规则就是:S[K] = { A[K], A[A[K]], A[A[A[K]]], ... }.最后返回数组S中最大的元素即可。
我们可以直接模拟,提交后发现运行超时。
手动模拟一下给出的示例:
A = [5,4,0,3,1,6,2] S[0]={5,6,2,0}; S[1]={4,1}; S[2]={0,5,2,6}; S[3]={3}; S[4]={1,4}; S[5]={6,2,0,5}; S[6]={2,0,5,6};
我们发现,其实在算出S[0]的长度后,计算S[2],S[5],S[6]都重复了操作。因为nums数组中的数字是在0~n-1之间的(n是nums数组的长度)。所以每一个S元素都会形成一个环。也就是说,如果当前的元素在之前的环中出现过,那么就不必再计算以该元素开头的S序列的长度了。这样势必会减少大量的操作。
这里用vis数组初始化为0表示元素没有在之前的环中出现过,等于1表示已经出现过在之前的环中。
题目代码:
class Solution {
public:
int arrayNesting(vector<int>& nums) {
int maxSize = INT_MIN;
int size = 0;
int vis[nums.size()] = {0};
for(int i = 0; i < nums.size(); i++){
size = 0;
int next = i;
while(!vis[next]){
vis[next] = 1;
size++;
next = nums[next];
}
maxSize = max(maxSize, size);
}
return maxSize;
}
};