第八届蓝桥杯【省赛试题6】最大公共子串

本文介绍了如何使用动态规划方法解决最大公共子串问题。通过分析题目描述,得出动态规划的状态转移方程a[i][j]=a[i-1][j-1]+1,并解释了递推过程和初始化设置,以找到字符串s1和s2的最长公共子串长度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述:

最大公共子串长度问题就是:

求两个串的所有子串中能够匹配上的最大长度是多少。
比如:"abcdkkk" 和 "baabcdadabc",
可以找到的最长的公共子串是"abcd",所以最大公共子串长度为4。
下面的程序是采用矩阵法进行求解的,这对串的规模不大的情况还是比较有效的解法。
请分析该解法的思路,并补全划线部分缺失的代码。

#include <stdio.h>
#include <string.h>

#define N 256
int f(const char* s1, const char* s2)
{
	int a[N][N];
	int len1 = strlen(s1);
	int len2 = strlen(s2);
	int i,j;
	
	memset(a,0,sizeof(int)*N*N);
	int max = 0;
	for(i=1; i<=len1; i++){
		for(j=1; j<=len2; j++){
			if(s1[i-1]==s2[j-1]) {
				a[i][j] = __________________________;  //填空
				if(a[i][j] > max) max = a[i][j];
			}
		}
	}
	
	return max;
}

int main()
{
	printf("%d\n", f("abcdkkk", "baabcdadabc"));
	return 0;
}

注意:只提交缺少的代码,不要提交已有的代码和符号。也不要提交说明性文字。

题目答案:

a[i-1][j-1]+1

题目思路:

动态规划的思想,a[i][j]表示到字符串s1的i位置和s2的j位置的最大公共子串的长度 ,数组初始化为0。为了方便理解,我们这么想,如果s1的字符串的第一个字符和s2的第一个字符相同,那么a[1][1] = 1;如果两个字符串的第二个字符和相同,那么,到第二个位置的最长公共子串就等于1+1 = 2,也就是到第一个字符的公共子串的个数+1。即a[i][j] = 1+ a[i-1][j-1]。因此,我们可以从第一个位置开始递推求出到任意一个位置的公共子串,在递推过程中记录最大的结果即可。



评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值