zigbee之SampleApp_ProcessEvent()

本文介绍了Zigbee网络中SampleApp应用的任务事件处理过程,包括普通事件接收、按键事件处理、数据接收及网络状态变更的响应。还详细解释了如何通过定时器实现周期性消息发送。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我们修改代码主要是在SampleApp.c这个文件夹下面,
SampleApp_ProcessEvent() 用户应用任务的事件处理函数 下面有两个系统消息


消息一SYS_EVENT_MSG 普通的事件
if ( events & SYS_EVENT_MSG ) //接收系统消息再进行判断
//接收属于本应用任务 SampleApp的消息,以 SampleApp_TaskID标记 
MSGpkt = (afIncomingMSGPacket_t *)osal_msg_receive( SampleApp_TaskID ); 
case KEY_CHANGE://按键事件 
SampleApp_HandleKeys( ((keyChange_t *)MSGpkt)->state, ((keyChange_t *)MSGpkt)->keys ); 
case AF_INCOMING_MSG_CMD: //接收数据事件,调用函数 AF_DataRequest()接收数据
SampleApp_MessageMSGCB( MSGpkt );   //调用回调函数对收到的数据进行处理 
case ZDO_STATE_CHANGE: //只要网络状态发生改变,就通过 ZDO_STATE_CHANGE 事
件通知所有的任务。同时完成对协调器,路由器,终端的设置 
注意:ZDO_STATE_CHANGE只有当设备网络发生改变后才会触发,所以在此处可做一些
初始化工作;如果网络一直连接的就不会再次进入这个函数了,只执行1次。 


/*初始化定时事件,就是设置发送周期性事件*/
uint8 osal_start_timerEx( uint8 taskID, uint16 event_id, uint16 timeout_value )
//osal_start_timerEx三个参数决定着周期性发送数据的,timeout_value间隔时间ms,时间到
//才调用SampleApp_SendPeriodicMessage();


//判断SAMPLEAPP_SEND_PERIODIC_MSG_EVT有没有发生,如果有的就执行下面函数 
 
系统消息二SAMPLEAPP_SEND_PERIODIC_MSG_EVT// Send a message out - This event is generated by a timer
if ( events & SAMPLEAPP_SEND_PERIODIC_MSG_EVT )//时间到了,就触发这个系统消息,然后调用发送周期函数


void SampleApp_SendPeriodicMessage( void )//周期发送函数
{
 调用afStatus_t AF_DataRequest( afAddrType_t *dstAddr, endPointDesc_t *srcEP,
                           uint16 cID, uint16 len, uint8 *buf, uint8 *transID,
                           uint8 options, uint8 radius )
  
}


void SampleApp_MessageMSGCB( afIncomingMSGPacket_t *pkt )//接受函数
void SampleApp_SendPeriodicMessage( void )//周期发送函数
SampleApp_SendFlashMessage(0);  //发数据  
调用 zb_BindDeviceRequest( )函数可以创建一个绑定条目
/************************************************************************************************** Filename: SampleApp.h Revised: $Date: 2007-10-27 17:22:23 -0700 (Sat, 27 Oct 2007) $ Revision: $Revision: 15795 $ Description: This file contains the Sample Application definitions. Copyright 2007 Texas Instruments Incorporated. All rights reserved. IMPORTANT: Your use of this Software is limited to those specific rights granted under the terms of a software license agreement between the user who downloaded the software, his/her employer (which must be your employer) and Texas Instruments Incorporated (the "License"). You may not use this Software unless you agree to abide by the terms of the License. The License limits your use, and you acknowledge, that the Software may not be modified, copied or distributed unless embedded on a Texas Instruments microcontroller or used solely and exclusively in conjunction with a Texas Instruments radio frequency transceiver, which is integrated into your product. Other than for the foregoing purpose, you may not use, reproduce, copy, prepare derivative works of, modify, distribute, perform, display or sell this Software and/or its documentation for any purpose. YOU FURTHER ACKNOWLEDGE AND AGREE THAT THE SOFTWARE AND DOCUMENTATION ARE PROVIDED 揂S IS?WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY, TITLE, NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL TEXAS INSTRUMENTS OR ITS LICENSORS BE LIABLE OR OBLIGATED UNDER CONTRACT, NEGLIGENCE, STRICT LIABILITY, CONTRIBUTION, BREACH OF WARRANTY, OR OTHER LEGAL EQUITABLE THEORY ANY DIRECT OR INDIRECT DAMAGES OR EXPENSES INCLUDING BUT NOT LIMITED TO ANY INCIDENTAL, SPECIAL, INDIRECT, PUNITIVE OR CONSEQUENTIAL DAMAGES, LOST PROFITS OR LOST DATA, COST OF PROCUREMENT OF SUBSTITUTE GOODS, TECHNOLOGY, SERVICES, OR ANY CLAIMS BY THIRD PARTIES (INCLUDING BUT NOT LIMITED TO ANY DEFENSE THEREOF), OR OTHER SIMILAR COSTS. Should you have any questions regarding your right to use this Software, contact Texas Instruments Incorporated at www.TI.com. **************************************************************************************************/ #ifndef SAMPLEAPP_H #define SAMPLEAPP_H #ifdef __cplusplus extern "C" { #endif /********************************************************************* * INCLUDES */ #include "ZComDef.h" /********************************************************************* * CONSTANTS */ // These constants are only for example and should be changed to the // device's needs #define SAMPLEAPP_ENDPOINT 20 #define SAMPLEAPP_PROFID 0x0F08 #define SAMPLEAPP_DEVICEID 0x0001 #define SAMPLEAPP_DEVICE_VERSION 0 #define SAMPLEAPP_FLAGS 0 #define SAMPLEAPP_MAX_CLUSTERS 2 #define SAMPLEAPP_PERIODIC_CLUSTERID 1 #define SAMPLEAPP_FLASH_CLUSTERID 2 #define SAMPLEAPP_LEDCTL_CLUSTERID 3 // Send Message Timeout #define SAMPLEAPP_SEND_PERIODIC_MSG_TIMEOUT 5000 // Every 5 seconds // Application Events (OSAL) - These are bit weighted definitions. #define SAMPLEAPP_SEND_PERIODIC_MSG_EVT 0x0001 // Group ID for Flash Command #define SAMPLEAPP_FLASH_GROUP 0x0001 // Flash Command Duration - in milliseconds #define SAMPLEAPP_FLASH_DURATION 1000 /********************************************************************* * MACROS */ /********************************************************************* * FUNCTIONS */ /* * Task Initialization for the Generic Application */ extern void SampleApp_Init( uint8 task_id ); /* * Task Event Processor for the Generic Application */ extern UINT16 SampleApp_ProcessEvent( uint8 task_id, uint16 events ); /********************************************************************* *********************************************************************/ #ifdef __cplusplus } #endif #endif /* SAMPLEAPP_H */ /************************************************************************************************** Filename: SampleApp.c Revised: $Date: 2009-03-18 15:56:27 -0700 (Wed, 18 Mar 2009) $ Revision: $Revision: 19453 $ Description: Sample Application (no Profile). Copyright 2007 Texas Instruments Incorporated. All rights reserved. IMPORTANT: Your use of this Software is limited to those specific rights granted under the terms of a software license agreement between the user who downloaded the software, his/her employer (which must be your employer) and Texas Instruments Incorporated (the "License"). You may not use this Software unless you agree to abide by the terms of the License. The License limits your use, and you acknowledge, that the Software may not be modified, copied or distributed unless embedded on a Texas Instruments microcontroller or used solely and exclusively in conjunction with a Texas Instruments radio frequency transceiver, which is integrated into your product. Other than for the foregoing purpose, you may not use, reproduce, copy, prepare derivative works of, modify, distribute, perform, display or sell this Software and/or its documentation for any purpose. YOU FURTHER ACKNOWLEDGE AND AGREE THAT THE SOFTWARE AND DOCUMENTATION ARE PROVIDED 揂S IS?WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY, TITLE, NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL TEXAS INSTRUMENTS OR ITS LICENSORS BE LIABLE OR OBLIGATED UNDER CONTRACT, NEGLIGENCE, STRICT LIABILITY, CONTRIBUTION, BREACH OF WARRANTY, OR OTHER LEGAL EQUITABLE THEORY ANY DIRECT OR INDIRECT DAMAGES OR EXPENSES INCLUDING BUT NOT LIMITED TO ANY INCIDENTAL, SPECIAL, INDIRECT, PUNITIVE OR CONSEQUENTIAL DAMAGES, LOST PROFITS OR LOST DATA, COST OF PROCUREMENT OF SUBSTITUTE GOODS, TECHNOLOGY, SERVICES, OR ANY CLAIMS BY THIRD PARTIES (INCLUDING BUT NOT LIMITED TO ANY DEFENSE THEREOF), OR OTHER SIMILAR COSTS. Should you have any questions regarding your right to use this Software, contact Texas Instruments Incorporated at www.TI.com. **************************************************************************************************/ /********************************************************************* This application isn't intended to do anything useful, it is intended to be a simple example of an application's structure. This application sends it's messages either as broadcast or broadcast filtered group messages. The other (more normal) message addressing is unicast. Most of the other sample applications are written to support the unicast message model. Key control: SW1: Sends a flash command to all devices in Group 1. SW2: Adds/Removes (toggles) this device in and out of Group 1. This will enable and disable the reception of the flash command. *********************************************************************/ /********************************************************************* * INCLUDES */ #include <stdio.h> #include <string.h> #include "OSAL.h" #include "ZGlobals.h" #include "AF.h" #include "aps_groups.h" #include "ZDApp.h" #include "MT_UART.h" //add by 1305106 #include "SampleApp.h" #include "SampleAppHw.h" #include "OnBoard.h" /* HAL */ #include "hal_lcd.h" #include "hal_led.h" #include "hal_key.h" #include"sht11.h" /********************************************************************* * MACROS */ /********************************************************************* * CONSTANTS */ /********************************************************************* * TYPEDEFS */ /********************************************************************* * GLOBAL VARIABLES */ // This list should be filled with Application specific Cluster IDs. const cId_t SampleApp_ClusterList[SAMPLEAPP_MAX_CLUSTERS] = { SAMPLEAPP_PERIODIC_CLUSTERID, SAMPLEAPP_FLASH_CLUSTERID, }; const SimpleDescriptionFormat_t SampleApp_SimpleDesc = { SAMPLEAPP_ENDPOINT, // int Endpoint; SAMPLEAPP_PROFID, // uint16 AppProfId[2]; SAMPLEAPP_DEVICEID, // uint16 AppDeviceId[2]; SAMPLEAPP_DEVICE_VERSION, // int AppDevVer:4; SAMPLEAPP_FLAGS, // int AppFlags:4; SAMPLEAPP_MAX_CLUSTERS, // uint8 AppNumInClusters; (cId_t *)SampleApp_ClusterList, // uint8 *pAppInClusterList; SAMPLEAPP_MAX_CLUSTERS, // uint8 AppNumInClusters; (cId_t *)SampleApp_ClusterList // uint8 *pAppInClusterList; }; // This is the Endpoint/Interface description. It is defined here, but // filled-in in SampleApp_Init(). Another way to go would be to fill // in the structure here and make it a "const" (in code space). The // way it's defined in this sample app it is define in RAM. endPointDesc_t SampleApp_epDesc; /********************************************************************* * EXTERNAL VARIABLES */ /********************************************************************* * EXTERNAL FUNCTIONS */ /********************************************************************* * LOCAL VARIABLES */ uint8 SampleApp_TaskID; // Task ID for internal task/event processing // This variable will be received when // SampleApp_Init() is called. devStates_t SampleApp_NwkState; uint8 SampleApp_TransID; // This is the unique message ID (counter) afAddrType_t SampleApp_Periodic_DstAddr; afAddrType_t SampleApp_Flash_DstAddr; aps_Group_t SampleApp_Group; uint8 SampleAppPeriodicCounter = 0; uint8 SampleAppFlashCounter = 0; /********************************************************************* * LOCAL FUNCTIONS */ void SampleApp_HandleKeys( uint8 shift, uint8 keys ); void SampleApp_MessageMSGCB( afIncomingMSGPacket_t *pckt ); void SampleApp_SendPeriodicMessage( void ); void SampleApp_SendFlashMessage( uint16 flashTime ); /********************************************************************* * NETWORK LAYER CALLBACKS */ /********************************************************************* * PUBLIC FUNCTIONS */ /********************************************************************* * @fn SampleApp_Init * * @brief Initialization function for the Generic App Task. * This is called during initialization and should contain * any application specific initialization (ie. hardware * initialization/setup, table initialization, power up * notificaiton ... ). * * @param task_id - the ID assigned by OSAL. This ID should be * used to send messages and set timers. * * @return none */ void SampleApp_Init( uint8 task_id ) { SampleApp_TaskID = task_id; SampleApp_NwkState = DEV_INIT; SampleApp_TransID = 0; // Device hardware initialization can be added here or in main() (Zmain.c). // If the hardware is application specific - add it here. // If the hardware is other parts of the device add it in main(). #if defined ( BUILD_ALL_DEVICES ) // The "Demo" target is setup to have BUILD_ALL_DEVICES and HOLD_AUTO_START // We are looking at a jumper (defined in SampleAppHw.c) to be jumpered // together - if they are - we will start up a coordinator. Otherwise, // the device will start as a router. if ( readCoordinatorJumper() ) zgDeviceLogicalType = ZG_DEVICETYPE_COORDINATOR; else zgDeviceLogicalType = ZG_DEVICETYPE_ROUTER; #endif // BUILD_ALL_DEVICES #if defined ( HOLD_AUTO_START ) // HOLD_AUTO_START is a compile option that will surpress ZDApp // from starting the device and wait for the application to // start the device. ZDOInitDevice(0); #endif // Setup for the periodic message's destination address // Broadcast to everyone SampleApp_Periodic_DstAddr.addrMode = (afAddrMode_t)AddrBroadcast; SampleApp_Periodic_DstAddr.endPoint = SAMPLEAPP_ENDPOINT; SampleApp_Periodic_DstAddr.addr.shortAddr = 0xFFFF; // Setup for the flash command's destination address - Group 1 SampleApp_Flash_DstAddr.addrMode = (afAddrMode_t)afAddrGroup; SampleApp_Flash_DstAddr.endPoint = SAMPLEAPP_ENDPOINT; SampleApp_Flash_DstAddr.addr.shortAddr = SAMPLEAPP_FLASH_GROUP; // Fill out the endpoint description. SampleApp_epDesc.endPoint = SAMPLEAPP_ENDPOINT; SampleApp_epDesc.task_id = &SampleApp_TaskID; SampleApp_epDesc.simpleDesc = (SimpleDescriptionFormat_t *)&SampleApp_SimpleDesc; SampleApp_epDesc.latencyReq = noLatencyReqs; // Register the endpoint description with the AF afRegister( &SampleApp_epDesc ); // Register for all key events - This app will handle all key events RegisterForKeys( SampleApp_TaskID ); MT_UartRegisterTaskID( SampleApp_TaskID ); //add by 1305106 // By default, all devices start out in Group 1 SampleApp_Group.ID = 0x0001; osal_memcpy( SampleApp_Group.name, "Group 1", 7 ); aps_AddGroup( SAMPLEAPP_ENDPOINT, &SampleApp_Group ); #if defined ( LCD_SUPPORTED ) HalLcdWriteString( "SampleApp", HAL_LCD_LINE_1 ); #endif } /********************************************************************* * @fn SampleApp_ProcessEvent * * @brief Generic Application Task event processor. This function * is called to process all events for the task. Events * include timers, messages and any other user defined events. * * @param task_id - The OSAL assigned task ID. * @param events - events to process. This is a bit map and can * contain more than one event. * * @return none */ uint16 SampleApp_ProcessEvent( uint8 task_id, uint16 events ) { afIncomingMSGPacket_t *MSGpkt; (void)task_id; // Intentionally unreferenced parameter if ( events & SYS_EVENT_MSG ) { MSGpkt = (afIncomingMSGPacket_t *)osal_msg_receive( SampleApp_TaskID ); while ( MSGpkt ) { switch ( MSGpkt->hdr.event ) { // Received when a key is pressed case KEY_CHANGE: SampleApp_HandleKeys( ((keyChange_t *)MSGpkt)->state, ((keyChange_t *)MSGpkt)->keys ); break; // Received when a messages is received (OTA) for this endpoint case AF_INCOMING_MSG_CMD: SampleApp_MessageMSGCB( MSGpkt ); break;; // Received whenever the device changes state in the network case ZDO_STATE_CHANGE: SampleApp_NwkState = (devStates_t)(MSGpkt->hdr.status); if ( (SampleApp_NwkState == DEV_ZB_COORD) || (SampleApp_NwkState == DEV_ROUTER) || (SampleApp_NwkState == DEV_END_DEVICE) ) { // Start sending the periodic message in a regular interval. HalLedSet(HAL_LED_1, HAL_LED_MODE_ON); osal_start_timerEx( SampleApp_TaskID, SAMPLEAPP_SEND_PERIODIC_MSG_EVT, SAMPLEAPP_SEND_PERIODIC_MSG_TIMEOUT ); } else { // Device is no longer in the network } break; default: break; } osal_msg_deallocate( (uint8 *)MSGpkt ); // Release the memory MSGpkt = (afIncomingMSGPacket_t *)osal_msg_receive( SampleApp_TaskID ); // Next - if one is available } return (events ^ SYS_EVENT_MSG); // return unprocessed events } // Send a message out - This event is generated by a timer // (setup in SampleApp_Init()). if ( events & SAMPLEAPP_SEND_PERIODIC_MSG_EVT ) { SampleApp_SendPeriodicMessage(); // Send the periodic message // Setup to send message again in normal period (+ a little jitter) osal_start_timerEx( SampleApp_TaskID, SAMPLEAPP_SEND_PERIODIC_MSG_EVT, (SAMPLEAPP_SEND_PERIODIC_MSG_TIMEOUT + (osal_rand() & 0x00FF)) ); return (events ^ SAMPLEAPP_SEND_PERIODIC_MSG_EVT); // return unprocessed events } return 0; // Discard unknown events } /********************************************************************* * Event Generation Functions */ /********************************************************************* * @fn SampleApp_HandleKeys * * @brief Handles all key events for this device. * * @param shift - true if in shift/alt. * @param keys - bit field for key events. Valid entries: * HAL_KEY_SW_2 * HAL_KEY_SW_1 * * @return none */ void SampleApp_HandleKeys( uint8 shift, uint8 keys ) { (void)shift; // Intentionally unreferenced parameter if ( keys & HAL_KEY_SW_6 ) { /* This key sends the Flash Command is sent to Group 1. * This device will not receive the Flash Command from this * device (even if it belongs to group 1). */ SampleApp_SendFlashMessage( SAMPLEAPP_FLASH_DURATION ); } if ( keys & HAL_KEY_SW_2 ) { /* The Flashr Command is sent to Group 1. * This key toggles this device in and out of group 1. * If this device doesn't belong to group 1, this application * will not receive the Flash command sent to group 1. */ aps_Group_t *grp; grp = aps_FindGroup( SAMPLEAPP_ENDPOINT, SAMPLEAPP_FLASH_GROUP ); if ( grp ) { // Remove from the group aps_RemoveGroup( SAMPLEAPP_ENDPOINT, SAMPLEAPP_FLASH_GROUP ); } else { // Add to the flash group aps_AddGroup( SAMPLEAPP_ENDPOINT, &SampleApp_Group ); } } } /********************************************************************* * LOCAL FUNCTIONS */ /********************************************************************* * @fn SampleApp_MessageMSGCB * * @brief Data message processor callback. This function processes * any incoming data - probably from other devices. So, based * on cluster ID, perform the intended action. * * @param none * * @return none */ void SampleApp_MessageMSGCB( afIncomingMSGPacket_t *pkt ) { uint16 flashTime; unsigned char *buf; switch ( pkt->clusterId ) { case SAMPLEAPP_PERIODIC_CLUSTERID: buf = pkt->cmd.Data; HalUARTWrite(0,"\r\nTemp:", 7); HalUARTWrite(0, buf, 7); HalUARTWrite(0," Humi:", 6); HalUARTWrite(0, buf+7, 7); break; case SAMPLEAPP_FLASH_CLUSTERID: flashTime = BUILD_UINT16(pkt->cmd.Data[1], pkt->cmd.Data[2] ); HalLedBlink( HAL_LED_4, 4, 50, (flashTime / 4) ); break; } } /********************************************************************* * @fn SampleApp_SendPeriodicMessage * * @brief Send the periodic message. * * @param none * * @return none */ void SampleApp_SendPeriodicMessage( void ) { char temp_buf[7]; char humi_buf[7]; char i; char buf[14]; float humi,temp; if(GetHumiAndTemp(&humi,&temp) == 0) { sprintf(humi_buf, (char *)"%f", humi); sprintf(temp_buf, (char *)"%f", temp); for(i=0; i<7; i++) { buf[i] = temp_buf[i]; buf[i+7] = humi_buf[i]; } AF_DataRequest( &SampleApp_Periodic_DstAddr, &SampleApp_epDesc, SAMPLEAPP_PERIODIC_CLUSTERID, 14, (unsigned char*)buf, &SampleApp_TransID, AF_DISCV_ROUTE, AF_DEFAULT_RADIUS ); } } /********************************************************************* * @fn SampleApp_SendFlashMessage * * @brief Send the flash message to group 1. * * @param flashTime - in milliseconds * * @return none */ void SampleApp_SendFlashMessage( uint16 flashTime ) { uint8 buffer[3]; buffer[0] = (uint8)(SampleAppFlashCounter++); buffer[1] = LO_UINT16( flashTime ); buffer[2] = HI_UINT16( flashTime ); if ( AF_DataRequest( &SampleApp_Flash_DstAddr, &SampleApp_epDesc, SAMPLEAPP_FLASH_CLUSTERID, 3, buffer, &SampleApp_TransID, AF_DISCV_ROUTE, AF_DEFAULT_RADIUS ) == afStatus_SUCCESS ) { } else { // Error occurred in request to send. } } /********************************************************************* *********************************************************************/ 一、系统分层功能 感知层:用实验箱的两个传感器模块 传感器 1:温湿度传感器,采集温度、湿度数据。 传感器 2:红外对射 ,采集触发状态。 网络层: Zigbee 通信:传感器 1、2 的数据,经 Zigbee 节点传给协调器,协调器通过串口发 PC 端。 数据处理:解析串口数据,分主题发 MQTT 网络,或存数据库 。 应用层:用 Python 做终端,实现界面、串口、数据库交互(可加 MQTT),完成这些功能: 二、具体功能 数据上传: 远程设备实时收传感器 1 数据,格式:学号姓名缩写+温度+湿度 。 远程设备实时收传感器 2 数据,格式:学号姓名缩写+传感器名+interrupt 。 Mysql 数据库:建不同数据表存两个传感器数据,表含 学号姓名缩写、传感器名、数据值、传感器状态 等字段 。 命令下发: 发 学号姓名缩写+Num1Led+on ,传感器 1 连的 Zigbee 模块 LED2 亮;发 …+off 则灭 。 发 学号姓名缩写+Num2Led+on ,传感器 2 连的 Zigbee 模块 LED2 亮;发 …+off 则灭 。 数据联动: 传感器 1:温度>25 且湿度>60,其连的 Zigbee 模块 LED2 闪烁,远程设备、数据库表显示 “温湿度异常”;恢复后显示 “异常解除” 。 传感器 2:触发超 5 次,其连的 Zigbee 模块 LED2 闪烁,远程设备、数据库表显示 “传感状态异常”;恢复后显示 “传感异常解除” 。 强制解除:发 学号姓名缩写+Num1Led+relie ,传感器 1 连的 LED2 停闪,设备和表显示 “强制异常解除温湿度” ;发 …+Num2Led+relie 同理。 数据展示:Python 界面里,串口控制,实时显示传感器 1 的 学号姓名缩写、温度、湿度 数据,呈现底层传感器联动状态 。 根据所给代码和要求,完成功能,给出完整的代码
最新发布
06-28
一、系统分层功能 感知层:用实验箱的两个传感器模块 传感器 1:温湿度传感器,采集温度、湿度数据。 传感器 2:红外对射 ,采集触发状态。 网络层: Zigbee 通信:传感器 1、2 的数据,经 Zigbee 节点传给协调器,协调器通过串口发 PC 端。 数据处理:解析串口数据,分主题发 MQTT 网络,或存数据库 。 应用层:用 Python 做终端,实现界面、串口、数据库交互(可加 MQTT),完成这些功能: 二、具体功能 数据上传: 远程设备实时收传感器 1 数据,格式:学号姓名缩写+温度+湿度 。 远程设备实时收传感器 2 数据,格式:学号姓名缩写+传感器名+interrupt 。 Mysql 数据库:建不同数据表存两个传感器数据,表含 学号姓名缩写、传感器名、数据值、传感器状态 等字段 。 命令下发: 发 学号姓名缩写+Num1Led+on ,传感器 1 连的 Zigbee 模块 LED2 亮;发 ...+off 则灭 。 发 学号姓名缩写+Num2Led+on ,传感器 2 连的 Zigbee 模块 LED2 亮;发 ...+off 则灭 。 数据联动: 传感器 1:温度>25 且湿度>60,其连的 Zigbee 模块 LED2 闪烁,远程设备、数据库表显示 “温湿度异常”;恢复后显示 “异常解除” 。 传感器 2:触发超 5 次,其连的 Zigbee 模块 LED2 闪烁,远程设备、数据库表显示 “传感状态异常”;恢复后显示 “传感异常解除” 。 强制解除:发 学号姓名缩写+Num1Led+relie ,传感器 1 连的 LED2 停闪,设备和表显示 “强制异常解除温湿度” ;发 ...+Num2Led+relie 同理。 数据展示:Python 界面里,串口控制,实时显示传感器 1 的 学号姓名缩写、温度、湿度 数据,呈现底层传感器联动状态 。 #include <stdio.h> #include <string.h> #include "OSAL.h" #include "ZGlobals.h" #include "AF.h" #include "aps_groups.h" #include "ZDApp.h" #include "MT_UART.h" //???? #include "SampleApp.h" #include "SampleAppHw.h" #include "OnBoard.h" /* HAL */ #include "hal_lcd.h" #include "hal_led.h" #include "hal_key.h" #include "hal_uart.h" #include "hal_mcu.h" #include "sht11.h" // P1 interrupt vector value is already defined in ioCC2530.h // #define P1INT_VECTOR 0x7B // Commented out to avoid redefinition warning // Sensor type configuration: // Combined sensor: supports both temp/humidity and IR sensor functions // sht11 command activates temp/humidity sensor, interrupt command activates IR sensor //#define COMBINED_SENSOR // Single sensor configuration (optional): //#define TEMP_HUMIDITY_SENSOR // Temperature/humidity sensor only // Default: IR sensor only (no macro defined) /********************************************************************* * CONSTANTS */ /********************************************************************* * TYPEDEFS */ /********************************************************************* * GLOBAL VARIABLES */ // This list should be filled with Application specific Cluster IDs. const cId_t SampleApp_ClusterList[SAMPLEAPP_MAX_CLUSTERS] = { SAMPLEAPP_PERIODIC_CLUSTERID, SAMPLEAPP_FLASH_CLUSTERID, SAMPLEAPP_BUZZER_CLUSTERID, SAMPLEAPP_SENSOR_IDENTIFY_CLUSTERID, }; // Add function declarations at the top of the file, after other declarations void SetBuzzerStatus(uint8 status); void SampleApp_ProcessMTMessage(afIncomingMSGPacket_t *msg); void InitIRSensorInterrupt(void); void ProcessIRSensorInterrupt(void); void ProcessLED2Flash(void); // LED2闪烁处理函数 void PrintDeviceInfo(void); // 打印设备信息 void PrintHexBytes(const char* title, const char* data, uint8 len); // 十六进制打印辅助函数 const SimpleDescriptionFormat_t SampleApp_SimpleDesc = { SAMPLEAPP_ENDPOINT, // int Endpoint; SAMPLEAPP_PROFID, // uint16 AppProfId[2]; SAMPLEAPP_DEVICEID, // uint16 AppDeviceId[2]; SAMPLEAPP_DEVICE_VERSION, // int AppDevVer:4; SAMPLEAPP_FLAGS, // int AppFlags:4; SAMPLEAPP_MAX_CLUSTERS, // uint8 AppNumInClusters; (cId_t *)SampleApp_ClusterList, // uint8 *pAppInClusterList; SAMPLEAPP_MAX_CLUSTERS, // uint8 AppNumOutClusters; (cId_t *)SampleApp_ClusterList // uint8 *pAppOutClusterList; }; // This is the Endpoint/Interface description. It is defined here, but // filled-in in SampleApp_Init(). Another way to go would be to fill // in the structure here and make it a "const" (in code space). The // way it's defined in this sample app it is define in RAM. endPointDesc_t SampleApp_epDesc; // Add global variable to control temperature and humidity reading static uint8 g_bReadTempHumi = 0; // Add IR sensor status variable static uint8 g_IRSensorStatus = 0; // Add sensor type variable - configure this based on device type // For combined sensor nodes, set to SENSOR_TYPE_COMBINED // For temperature/humidity sensor nodes, set to SENSOR_TYPE_TEMP_HUMIDITY // For IR sensor nodes, set to SENSOR_TYPE_IR #ifdef COMBINED_SENSOR static uint8 g_SensorType = SENSOR_TYPE_COMBINED; #elif defined(TEMP_HUMIDITY_SENSOR) static uint8 g_SensorType = SENSOR_TYPE_TEMP_HUMIDITY; #else static uint8 g_SensorType = SENSOR_TYPE_IR; #endif // 添加全局变量,用于防止中断处理函数重入 static uint8 g_IRProcessingInProgress = 0; // 添加控制LED2闪烁的全局变量 static uint8 g_LED2FlashStatus = 0; // 0: 停止闪烁, 1: 闪烁中 // 定义命令字符串常量,避免硬编码字符串和在函数调用中重复创建 const char* CMD_NUM1LED_ON = "42213238YFC+Num1Led+on"; const char* CMD_NUM1LED_OFF = "42213238YFC+Num1Led+off"; const char* CMD_NUM2LED_ON = "42213238YFC+Num2Led+on"; const char* CMD_NUM2LED_OFF = "42213238YFC+Num2Led+off"; const char* CMD_ON = "on"; const char* CMD_OFF = "off"; const char* CMD_HT = "ht"; const char* CMD_HF = "hf"; const char* CMD_FLASH = "flash"; // 闪烁命令 const char* CMD_RELIE = "42213238YFC+Num1Led+relie"; // 停止闪烁命令 const char* CMD_SHUO = "shuo"; // 红外对射传感器闪烁命令 const char* CMD_IR_RELIE = "42213238YFC+Num2Led+relie"; // 红外对射传感器停止闪烁命令 /********************************************************************* * EXTERNAL VARIABLES */ /********************************************************************* * EXTERNAL FUNCTIONS */ /********************************************************************* * LOCAL VARIABLES */ uint8 SampleApp_TaskID; // Task ID for internal task/event processing // This variable will be received when // SampleApp_Init() is called. devStates_t SampleApp_NwkState; uint8 SampleApp_TransID; // This is the unique message ID (counter) afAddrType_t SampleApp_Periodic_DstAddr; afAddrType_t SampleApp_Flash_DstAddr; aps_Group_t SampleApp_Group; uint8 SampleAppPeriodicCounter = 0; uint8 SampleAppFlashCounter = 0; /********************************************************************* * LOCAL FUNCTIONS */ void SampleApp_HandleKeys( uint8 shift, uint8 keys ); void SampleApp_MessageMSGCB( afIncomingMSGPacket_t *pckt ); void SampleApp_SendPeriodicMessage( void ); void SampleApp_SendFlashMessage( uint16 flashTime ); /********************************************************************* * NETWORK LAYER CALLBACKS */ /********************************************************************* * PUBLIC FUNCTIONS */ /********************************************************************* * @fn SampleApp_Init * * @brief Initialization function for the Generic App Task. * This is called during initialization and should contain * any application specific initialization (ie. hardware * initialization/setup, table initialization, power up * notificaiton ... ). * * @param task_id - the ID assigned by OSAL. This ID should be * used to send messages and set timers. * * @return none */ void SampleApp_Init( uint8 task_id ) { SampleApp_TaskID = task_id; SampleApp_NwkState = DEV_INIT; SampleApp_TransID = 0; // Device hardware initialization can be added here or in main() (Zmain.c). // If the hardware is application specific - add it here. // If the hardware is other parts of the device add it in main(). // Initialize IR sensor interrupt InitIRSensorInterrupt(); #if defined ( BUILD_ALL_DEVICES ) // The "Demo" target is setup to have BUILD_ALL_DEVICES and HOLD_AUTO_START // We are looking at a jumper (defined in SampleAppHw.c) to be jumpered // together - if they are - we will start up a coordinator. Otherwise, // the device will start as a router. if ( readCoordinatorJumper() ) zgDeviceLogicalType = ZG_DEVICETYPE_COORDINATOR; else zgDeviceLogicalType = ZG_DEVICETYPE_ROUTER; #endif // BUILD_ALL_DEVICES #if defined ( HOLD_AUTO_START ) // HOLD_AUTO_START is a compile option that will surpress ZDApp // from starting the device and wait for the application to // start the device. ZDOInitDevice(0); #endif // Setup for the periodic message's destination address // Broadcast to everyone SampleApp_Periodic_DstAddr.addrMode = (afAddrMode_t)AddrBroadcast; SampleApp_Periodic_DstAddr.endPoint = SAMPLEAPP_ENDPOINT; SampleApp_Periodic_DstAddr.addr.shortAddr = 0xFFFF; // Setup for the flash command's destination address - Group 1 SampleApp_Flash_DstAddr.addrMode = (afAddrMode_t)afAddrGroup; SampleApp_Flash_DstAddr.endPoint = SAMPLEAPP_ENDPOINT; SampleApp_Flash_DstAddr.addr.shortAddr = SAMPLEAPP_FLASH_GROUP; // Fill out the endpoint description. SampleApp_epDesc.endPoint = SAMPLEAPP_ENDPOINT; SampleApp_epDesc.task_id = &SampleApp_TaskID; SampleApp_epDesc.simpleDesc = (SimpleDescriptionFormat_t *)&SampleApp_SimpleDesc; SampleApp_epDesc.latencyReq = noLatencyReqs; // Register the endpoint description with the AF afRegister( &SampleApp_epDesc ); // Register for all key events - This app will handle all key events RegisterForKeys( SampleApp_TaskID ); MT_UartRegisterTaskID( SampleApp_TaskID ); //add by 1305106 // By default, all devices start out in Group 1 SampleApp_Group.ID = 0x0001; osal_memcpy( SampleApp_Group.name, "Group 1", 7 ); aps_AddGroup( SAMPLEAPP_ENDPOINT, &SampleApp_Group ); #if defined ( LCD_SUPPORTED ) HalLcdWriteString( "SampleApp", HAL_LCD_LINE_1 ); #endif // 打印设备类型和传感器类型信息 PrintDeviceInfo(); } /********************************************************************* * @fn SampleApp_ProcessEvent * * @brief Generic Application Task event processor. This function * is called to process all events for the task. Events * include timers, messages and any other user defined events. * * @param task_id - The OSAL assigned task ID. * @param events - events to process. This is a bit map and can * contain more than one event. * * @return none */ uint16 SampleApp_ProcessEvent( uint8 task_id, uint16 events ) { afIncomingMSGPacket_t *MSGpkt; (void)task_id; // Intentionally unreferenced parameter if ( events & SYS_EVENT_MSG ) { MSGpkt = (afIncomingMSGPacket_t *)osal_msg_receive( SampleApp_TaskID ); while ( MSGpkt ) { switch ( MSGpkt->hdr.event ) { // Received when a key is pressed case KEY_CHANGE: SampleApp_HandleKeys( ((keyChange_t *)MSGpkt)->state, ((keyChange_t *)MSGpkt)->keys ); break; // Received when a messages is received (OTA) for this endpoint case AF_INCOMING_MSG_CMD: SampleApp_MessageMSGCB( MSGpkt ); break;; case SPI_INCOMING_ZAPP_DATA: SampleApp_ProcessMTMessage(MSGpkt); MT_UartAppFlowControl (MT_UART_ZAPP_RX_READY); break; // Received whenever the device changes state in the network case ZDO_STATE_CHANGE: SampleApp_NwkState = (devStates_t)(MSGpkt->hdr.status); Sht11Init(); if ( (SampleApp_NwkState == DEV_ZB_COORD) || (SampleApp_NwkState == DEV_ROUTER) || (SampleApp_NwkState == DEV_END_DEVICE) ) { // Start sending the periodic message in a regular interval. HalLedSet(HAL_LED_1, HAL_LED_MODE_ON); osal_start_timerEx( SampleApp_TaskID, SAMPLEAPP_SEND_PERIODIC_MSG_EVT, SAMPLEAPP_SEND_PERIODIC_MSG_TIMEOUT ); } else { // Device is no longer in the network } break; default: break; } osal_msg_deallocate( (uint8 *)MSGpkt ); MSGpkt = (afIncomingMSGPacket_t *)osal_msg_receive( SampleApp_TaskID ); } return (events ^ SYS_EVENT_MSG); // return unprocessed events } // Send a message out - This event is generated by a timer // (setup in SampleApp_Init()). if ( events & SAMPLEAPP_SEND_PERIODIC_MSG_EVT ) { SampleApp_SendPeriodicMessage(); // Send the periodic message // Setup to send message again in normal period (+ a little jitter) osal_start_timerEx( SampleApp_TaskID, SAMPLEAPP_SEND_PERIODIC_MSG_EVT, (SAMPLEAPP_SEND_PERIODIC_MSG_TIMEOUT + (osal_rand() & 0x00FF)) ); return (events ^ SAMPLEAPP_SEND_PERIODIC_MSG_EVT); // return unprocessed events } // Process IR sensor interrupt event if ( events & SAMPLEAPP_SEND_SENSOR_INT_EVT ) { ProcessIRSensorInterrupt(); return (events ^ SAMPLEAPP_SEND_SENSOR_INT_EVT); } // 处理LED2闪烁事件 if ( events & SAMPLEAPP_LED2_FLASH_EVT ) { // 添加调试输出 char buf[100]; sprintf(buf, "处理LED2闪烁事件, g_LED2FlashStatus=%d, g_SensorType=%d\r\n", g_LED2FlashStatus, g_SensorType); HalUARTWrite(0, (uint8*)buf, strlen(buf)); // 检查是否是温湿度传感器或红外对射传感器,且闪烁标志为1 if (g_LED2FlashStatus == 1 && (g_SensorType == SENSOR_TYPE_TEMP_HUMIDITY || g_SensorType == SENSOR_TYPE_IR)) { // 执行闪烁处理函数 ProcessLED2Flash(); // 不需要在这里设置下一次闪烁计时器,已在ProcessLED2Flash函数中处理 } else { // g_LED2FlashStatus不为1时,确保LED2关闭 if (g_LED2FlashStatus == 0) { HalLedSet(HAL_LED_2, HAL_LED_MODE_OFF); HalUARTWrite(0, (uint8*)"闪烁标志为0,停止闪烁并关闭LED2\r\n", 32); } } return (events ^ SAMPLEAPP_LED2_FLASH_EVT); } return 0; // Discard unknown events } /********************************************************************* * Event Generation Functions */ /********************************************************************* * @fn SampleApp_HandleKeys * * @brief Handles all key events for this device. * * @param shift - true if in shift/alt. * @param keys - bit field for key events. Valid entries: * HAL_KEY_SW_2 * HAL_KEY_SW_1 * * @return none */ void SampleApp_HandleKeys( uint8 shift, uint8 keys ) { (void)shift; // Intentionally unreferenced parameter if ( keys & HAL_KEY_SW_6 ) { /* This key sends the Flash Command is sent to Group 1. * This device will not receive the Flash Command from this * device (even if it belongs to group 1). */ SampleApp_SendFlashMessage( SAMPLEAPP_FLASH_DURATION ); } if ( keys & HAL_KEY_SW_2 ) { /* The Flashr Command is sent to Group 1. * This key toggles this device in and out of group 1. * If this device doesn't belong to group 1, this application * will not receive the Flash command sent to group 1. */ aps_Group_t *grp; grp = aps_FindGroup( SAMPLEAPP_ENDPOINT, SAMPLEAPP_FLASH_GROUP ); if ( grp ) { // Remove from the group aps_RemoveGroup( SAMPLEAPP_ENDPOINT, SAMPLEAPP_FLASH_GROUP ); } else { // Add to the flash group aps_AddGroup( SAMPLEAPP_ENDPOINT, &SampleApp_Group ); } } } /********************************************************************* * LOCAL FUNCTIONS */ /********************************************************************* * @fn SampleApp_MessageMSGCB * * @brief Data message processor callback. This function processes * any incoming data - probably from other devices. So, based * on cluster ID, perform the intended action. * * @param none * * @return none */ void SampleApp_MessageMSGCB( afIncomingMSGPacket_t *pkt ) { uint16 flashTime; uint8 *buf; switch(pkt->clusterId) { case SAMPLEAPP_PERIODIC_CLUSTERID: buf = pkt->cmd.Data; if(zgDeviceLogicalType == ZG_DEVICETYPE_COORDINATOR) { // Coordinator received data from end device if(pkt->cmd.DataLength == 4 && buf[0] <= 100) { // Format and print temperature data char tempStr[50]; sprintf(tempStr, "42213238YFC+温湿度传感器+温度:%d.%d C+湿度:%d.%d%%\r\n", buf[0], buf[1], buf[2], buf[3]); HalUARTWrite(0, (uint8*)tempStr, strlen(tempStr)); } else if(pkt->cmd.DataLength == 2 && buf[0] == 0x02) { // Process IR sensor data char irStr[50]; if(buf[1] == 0x01) { sprintf(irStr, "IR Sensor Node: Obstacle Detected!\r\n"); } else { sprintf(irStr, "IR Sensor Node: No Obstacle\r\n"); } HalUARTWrite(0, (uint8*)irStr, strlen(irStr)); } else if(pkt->cmd.DataLength == 3 && buf[0] == 0x03) { // Process interrupt message from end device if(buf[1] == 0x01) { // Coordinator prints the message and also blinks LED2 HalUARTWrite(0, (uint8*)"42213238YFC+红外对射传感器+interrupt\r\n", 36); // Flash LED2 10 times on coordinator as well HalLedBlink(HAL_LED_2, 10, 50, 200); } } else if(pkt->cmd.DataLength == 2 && buf[0] == 0x04) { // Process sensor identification response uint8 sensorType = buf[1]; char coordMsg[80]; uint16 srcAddr = pkt->srcAddr.addr.shortAddr; if(sensorType == SENSOR_TYPE_TEMP_HUMIDITY) { sprintf(coordMsg, "Device 0x%04X: Temperature/Humidity sensor identified and LED2 activated\r\n", srcAddr); HalUARTWrite(0, (uint8*)coordMsg, strlen(coordMsg)); } else if(sensorType == SENSOR_TYPE_IR) { sprintf(coordMsg, "Device 0x%04X: IR sensor identified and LED2 activated\r\n", srcAddr); HalUARTWrite(0, (uint8*)coordMsg, strlen(coordMsg)); } } } else { // End device received command from coordinator if(pkt->cmd.DataLength == 1) { if(buf[0] == 0x01) { // Start temperature reading g_bReadTempHumi = 1; osal_start_timerEx(SampleApp_TaskID, SAMPLEAPP_SEND_PERIODIC_MSG_EVT, 1000); } else { // Stop temperature reading g_bReadTempHumi = 0; osal_stop_timerEx(SampleApp_TaskID, SAMPLEAPP_SEND_PERIODIC_MSG_EVT); } } else if(pkt->cmd.DataLength == 2 && buf[0] == 0x10) { // 处理协调器转发的闪烁命令,仅终端设备响应 if(zgDeviceLogicalType != ZG_DEVICETYPE_COORDINATOR && g_SensorType == SENSOR_TYPE_TEMP_HUMIDITY) { if(buf[1] == 0x01) { // 启动LED2闪烁 g_LED2FlashStatus = 1; osal_set_event(SampleApp_TaskID, SAMPLEAPP_LED2_FLASH_EVT); // 添加调试输出 HalUARTWrite(0, (uint8*)"接收到闪烁命令,启动LED2闪烁\r\n", 30); } else { // 停止LED2闪烁 g_LED2FlashStatus = 0; HalLedSet(HAL_LED_2, HAL_LED_MODE_OFF); // 明确停止闪烁定时器 osal_stop_timerEx(SampleApp_TaskID, SAMPLEAPP_LED2_FLASH_EVT); // 添加调试输出 HalUARTWrite(0, (uint8*)"接收到停止命令,停止LED2闪烁\r\n", 30); } } } // 处理协调器转发的红外对射传感器闪烁命令 else if(pkt->cmd.DataLength == 2 && buf[0] == 0x11) { // 处理协调器转发的红外对射传感器闪烁命令,仅终端设备响应 if(zgDeviceLogicalType != ZG_DEVICETYPE_COORDINATOR && g_SensorType == SENSOR_TYPE_IR) { if(buf[1] == 0x01) { // 启动红外对射传感器LED2闪烁 g_LED2FlashStatus = 1; osal_set_event(SampleApp_TaskID, SAMPLEAPP_LED2_FLASH_EVT); // 添加调试输出 HalUARTWrite(0, (uint8*)"接收到红外对射传感器闪烁命令,启动LED2闪烁\r\n", 42); } else { // 停止红外对射传感器LED2闪烁 g_LED2FlashStatus = 0; HalLedSet(HAL_LED_2, HAL_LED_MODE_OFF); // 明确停止闪烁定时器 osal_stop_timerEx(SampleApp_TaskID, SAMPLEAPP_LED2_FLASH_EVT); // 添加调试输出 HalUARTWrite(0, (uint8*)"接收到红外对射传感器停止命令,停止LED2闪烁\r\n", 42); } } } } break; case SAMPLEAPP_FLASH_CLUSTERID: flashTime = BUILD_UINT16(pkt->cmd.Data[1], pkt->cmd.Data[2]); HalLedBlink(HAL_LED_4, 4, 50, (flashTime / 4)); break; case SAMPLEAPP_BUZZER_CLUSTERID: SetBuzzerStatus(pkt->cmd.Data[0]); break; case SAMPLEAPP_SENSOR_IDENTIFY_CLUSTERID: // Handle sensor identification requests if(zgDeviceLogicalType != ZG_DEVICETYPE_COORDINATOR) { // This is an end device, check if we should respond uint8 cmd = pkt->cmd.Data[0]; if(cmd == SENSOR_IDENTIFY_CMD_SHT11 && (g_SensorType == SENSOR_TYPE_TEMP_HUMIDITY || g_SensorType == SENSOR_TYPE_COMBINED)) { // This is a temperature/humidity sensor or combined sensor responding to sht11 command // Turn on LED2 and send identification response HalLedSet(HAL_LED_2, HAL_LED_MODE_ON); // Send identification response to coordinator uint8 response[2]; response[0] = 0x04; // Sensor identification response // For combined sensor responding to sht11, report as temp/humidity sensor response[1] = SENSOR_TYPE_TEMP_HUMIDITY; AF_DataRequest(&SampleApp_Periodic_DstAddr, &SampleApp_epDesc, SAMPLEAPP_PERIODIC_CLUSTERID, 2, response, &SampleApp_TransID, AF_DISCV_ROUTE, AF_DEFAULT_RADIUS); } else if(cmd == SENSOR_IDENTIFY_CMD_INTERRUPT && (g_SensorType == SENSOR_TYPE_IR || g_SensorType == SENSOR_TYPE_COMBINED)) { // This is an IR sensor or combined sensor responding to interrupt command // Turn on LED2 and send identification response HalLedSet(HAL_LED_2, HAL_LED_MODE_ON); // Send identification response to coordinator uint8 response[2]; response[0] = 0x04; // Sensor identification response // For combined sensor responding to interrupt, report as IR sensor response[1] = SENSOR_TYPE_IR; AF_DataRequest(&SampleApp_Periodic_DstAddr, &SampleApp_epDesc, SAMPLEAPP_PERIODIC_CLUSTERID, 2, response, &SampleApp_TransID, AF_DISCV_ROUTE, AF_DEFAULT_RADIUS); } else if(cmd == 0x05 && (g_SensorType == SENSOR_TYPE_TEMP_HUMIDITY || g_SensorType == SENSOR_TYPE_COMBINED)) { // Turn off LED2 for temperature/humidity sensors HalLedSet(HAL_LED_2, HAL_LED_MODE_OFF); } else if(cmd == 0x06 && (g_SensorType == SENSOR_TYPE_IR || g_SensorType == SENSOR_TYPE_COMBINED)) { // Turn off LED2 for IR sensors HalLedSet(HAL_LED_2, HAL_LED_MODE_OFF); } } break; } } /********************************************************************* * @fn SampleApp_SendPeriodicMessage * * @brief Send the periodic message. * * @param none * * @return none */ void SampleApp_SendPeriodicMessage(void) { if(g_bReadTempHumi) { uint8 temp_int, temp_dec, humi_int, humi_dec; char buf[50]; float humi, temp; // Initialize SHT11 sensor Sht11Init(); if(GetHumiAndTemp(&humi, &temp) == 0) { // Convert float to integer parts temp_int = (uint8)temp; temp_dec = (uint8)((temp - temp_int) * 10); humi_int = (uint8)humi; humi_dec = (uint8)((humi - humi_int) * 10); // Format the message sprintf(buf, "42213238YFC+温湿度传感器+温度:%d.%d C+湿度:%d.%d%%\r\n", temp_int, temp_dec, humi_int, humi_dec); // Send to UART HalUARTWrite(0, (uint8*)buf, strlen(buf)); // Prepare network data packet buf[0] = temp_int; buf[1] = temp_dec; buf[2] = humi_int; buf[3] = humi_dec; // Send data to network and check result afStatus_t status = AF_DataRequest(&SampleApp_Periodic_DstAddr, &SampleApp_epDesc, SAMPLEAPP_PERIODIC_CLUSTERID, 4, // Only send 4 bytes of data (uint8*)buf, &SampleApp_TransID, AF_DISCV_ROUTE, AF_DEFAULT_RADIUS); // 只记录错误但不中断流程,保持原有功能不变 if (status != afStatus_SUCCESS) { // 可以在这里添加错误处理代码,如重试或记录日志 // 但不要中断原有功能流程 } } // Restart timer for next reading osal_start_timerEx(SampleApp_TaskID, SAMPLEAPP_SEND_PERIODIC_MSG_EVT, 2000); // Read every 2 seconds } } /********************************************************************* * @fn SampleApp_SendFlashMessage * * @brief Send the flash message to group 1. * * @param flashTime - in milliseconds * * @return none */ void SampleApp_SendFlashMessage( uint16 flashTime ){ uint8 buffer[3]; buffer[0] = (uint8)(SampleAppFlashCounter++); buffer[1] = LO_UINT16( flashTime ); buffer[2] = HI_UINT16( flashTime ); if ( AF_DataRequest( &SampleApp_Flash_DstAddr, &SampleApp_epDesc, SAMPLEAPP_FLASH_CLUSTERID, 3, buffer, &SampleApp_TransID, AF_DISCV_ROUTE, AF_DEFAULT_RADIUS ) == afStatus_SUCCESS ) { } else { // Error occurred in request to send. } } void SampleApp_ProcessMTMessage(afIncomingMSGPacket_t *msg) { // 增加安全检查,确保msg指针有效 if(msg == NULL) { return; } const char *msgPtr = ((const char *)msg+2); uint8 status; // 调试输出,打印收到的命令 HalUARTWrite(0, (uint8*)"收到命令: ", 10); HalUARTWrite(0, (uint8*)msgPtr, strlen(msgPtr)); HalUARTWrite(0, (uint8*)"\r\n", 2); // 打印命令的十六进制值,帮助调试 PrintHexBytes("命令十六进制", msgPtr, strlen(msgPtr)); // 打印预期命令常量进行比较 char buf[100]; sprintf(buf, "预期relie命令: %s, 长度: %d\r\n", CMD_RELIE, strlen(CMD_RELIE)); HalUARTWrite(0, (uint8*)buf, strlen(buf)); // 打印预期命令的十六进制值 PrintHexBytes("预期十六进制", CMD_RELIE, strlen(CMD_RELIE)); // 使用更安全的字符串比较方式 if(strncmp(msgPtr, CMD_NUM1LED_OFF, strlen(CMD_NUM1LED_OFF)) == 0) { // Send command to turn off LED2 for temperature/humidity sensors uint8 cmd[2]; cmd[0] = 0x05; // LED control command cmd[1] = 0x00; // Turn off LED2 for temp/humidity sensors AF_DataRequest(&SampleApp_Periodic_DstAddr, &SampleApp_epDesc, SAMPLEAPP_SENSOR_IDENTIFY_CLUSTERID, 2, cmd, &SampleApp_TransID, AF_DISCV_ROUTE, AF_DEFAULT_RADIUS); } else if(strncmp(msgPtr, CMD_NUM2LED_OFF, strlen(CMD_NUM2LED_OFF)) == 0) { // Send command to turn off LED2 for IR sensors uint8 cmd[2]; cmd[0] = 0x06; // LED control command cmd[1] = 0x00; // Turn off LED2 for IR sensors AF_DataRequest(&SampleApp_Periodic_DstAddr, &SampleApp_epDesc, SAMPLEAPP_SENSOR_IDENTIFY_CLUSTERID, 2, cmd, &SampleApp_TransID, AF_DISCV_ROUTE, AF_DEFAULT_RADIUS); } else if(strncmp(msgPtr, CMD_ON, strlen(CMD_ON)) == 0) { status = 0x01; AF_DataRequest(&SampleApp_Periodic_DstAddr, &SampleApp_epDesc, SAMPLEAPP_BUZZER_CLUSTERID, 1, &status, &SampleApp_TransID, AF_DISCV_ROUTE, AF_DEFAULT_RADIUS); } else if(strncmp(msgPtr, CMD_OFF, strlen(CMD_OFF)) == 0) { status = 0x00; AF_DataRequest(&SampleApp_Periodic_DstAddr, &SampleApp_epDesc, SAMPLEAPP_BUZZER_CLUSTERID, 1, &status, &SampleApp_TransID, AF_DISCV_ROUTE, AF_DEFAULT_RADIUS); } else if(strncmp(msgPtr, CMD_HT, strlen(CMD_HT)) == 0) { // Forward the command to end device uint8 cmd = 0x01; // Command for starting temperature reading AF_DataRequest(&SampleApp_Periodic_DstAddr, &SampleApp_epDesc, SAMPLEAPP_PERIODIC_CLUSTERID, 1, &cmd, &SampleApp_TransID, AF_DISCV_ROUTE, AF_DEFAULT_RADIUS); } else if(strncmp(msgPtr, CMD_HF, strlen(CMD_HF)) == 0) { // Forward the command to end device uint8 cmd = 0x00; // Command for stopping temperature reading AF_DataRequest(&SampleApp_Periodic_DstAddr, &SampleApp_epDesc, SAMPLEAPP_PERIODIC_CLUSTERID, 1, &cmd, &SampleApp_TransID, AF_DISCV_ROUTE, AF_DEFAULT_RADIUS); } else if(strncmp(msgPtr, CMD_NUM1LED_ON, strlen(CMD_NUM1LED_ON)) == 0) { // Send sensor identification request for temperature/humidity sensors uint8 cmd = SENSOR_IDENTIFY_CMD_SHT11; AF_DataRequest(&SampleApp_Periodic_DstAddr, &SampleApp_epDesc, SAMPLEAPP_SENSOR_IDENTIFY_CLUSTERID, 1, &cmd, &SampleApp_TransID, AF_DISCV_ROUTE, AF_DEFAULT_RADIUS); } else if(strncmp(msgPtr, CMD_NUM2LED_ON, strlen(CMD_NUM2LED_ON)) == 0) { // Send sensor identification request for IR sensors uint8 cmd = SENSOR_IDENTIFY_CMD_INTERRUPT; AF_DataRequest(&SampleApp_Periodic_DstAddr, &SampleApp_epDesc, SAMPLEAPP_SENSOR_IDENTIFY_CLUSTERID, 1, &cmd, &SampleApp_TransID, AF_DISCV_ROUTE, AF_DEFAULT_RADIUS); } else if(strncmp(msgPtr, CMD_FLASH, strlen(CMD_FLASH)) == 0) { // 添加调试输出 HalUARTWrite(0, (uint8*)"收到flash命令\r\n", 14); // 只有温湿度传感器模块响应flash命令 if (g_SensorType == SENSOR_TYPE_TEMP_HUMIDITY) { // 添加调试输出 HalUARTWrite(0, (uint8*)"当前是温湿度传感器模块\r\n", 25); if (zgDeviceLogicalType != ZG_DEVICETYPE_COORDINATOR) { // 只有终端设备执行闪烁,协调器不闪烁 // 启动LED2闪烁 g_LED2FlashStatus = 1; // 触发闪烁事件,立即开始 osal_set_event(SampleApp_TaskID, SAMPLEAPP_LED2_FLASH_EVT); // 添加调试输出 HalUARTWrite(0, (uint8*)"终端设备开始LED2闪烁\r\n", 24); } else { // 协调器接收到flash命令时,转发给所有设备 uint8 cmd[2]; cmd[0] = 0x10; // 自定义的flash命令标识 cmd[1] = 0x01; // 开始闪烁 // 添加调试输出 HalUARTWrite(0, (uint8*)"协调器转发flash命令到网络\r\n", 27); AF_DataRequest(&SampleApp_Periodic_DstAddr, &SampleApp_epDesc, SAMPLEAPP_PERIODIC_CLUSTERID, 2, cmd, &SampleApp_TransID, AF_DISCV_ROUTE, AF_DEFAULT_RADIUS); } } else { // 添加调试输出 HalUARTWrite(0, (uint8*)"不是温湿度传感器模块,忽略命令\r\n", 32); } } else if(strncmp(msgPtr, CMD_RELIE, strlen(CMD_RELIE)) == 0) { // 添加调试输出 HalUARTWrite(0, (uint8*)"匹配到relie命令\r\n", 17); // 只有温湿度传感器模块响应relie命令 if (g_SensorType == SENSOR_TYPE_TEMP_HUMIDITY) { // 添加调试输出 HalUARTWrite(0, (uint8*)"当前是温湿度传感器模块\r\n", 25); if (zgDeviceLogicalType != ZG_DEVICETYPE_COORDINATOR) { // 只有终端设备执行停止闪烁,协调器不处理 // 停止LED2闪烁 g_LED2FlashStatus = 0; // 关闭LED2 HalLedSet(HAL_LED_2, HAL_LED_MODE_OFF); // 明确停止闪烁定时器 osal_stop_timerEx(SampleApp_TaskID, SAMPLEAPP_LED2_FLASH_EVT); // 添加调试输出 HalUARTWrite(0, (uint8*)"终端设备停止LED2闪烁\r\n", 24); } else { // 协调器接收到relie命令时,转发给所有设备 uint8 cmd[2]; cmd[0] = 0x10; // 自定义的flash命令标识 cmd[1] = 0x00; // 停止闪烁 // 添加调试输出 HalUARTWrite(0, (uint8*)"协调器转发停止闪烁命令到网络\r\n", 31); AF_DataRequest(&SampleApp_Periodic_DstAddr, &SampleApp_epDesc, SAMPLEAPP_PERIODIC_CLUSTERID, 2, cmd, &SampleApp_TransID, AF_DISCV_ROUTE, AF_DEFAULT_RADIUS); } } else { // 添加调试输出 HalUARTWrite(0, (uint8*)"不是温湿度传感器模块,忽略命令\r\n", 32); } } // 添加对红外对射传感器停止闪烁命令的处理 else if(strncmp(msgPtr, CMD_IR_RELIE, strlen(CMD_IR_RELIE)) == 0) { // 添加调试输出 HalUARTWrite(0, (uint8*)"匹配到红外对射停止闪烁命令\r\n", 29); // 只有红外对射传感器模块响应停止闪烁命令 if (g_SensorType == SENSOR_TYPE_IR) { // 添加调试输出 HalUARTWrite(0, (uint8*)"当前是红外对射传感器模块\r\n", 27); if (zgDeviceLogicalType != ZG_DEVICETYPE_COORDINATOR) { // 只有终端设备执行停止闪烁,协调器不处理 // 停止LED2闪烁 g_LED2FlashStatus = 0; // 关闭LED2 HalLedSet(HAL_LED_2, HAL_LED_MODE_OFF); // 明确停止闪烁定时器 osal_stop_timerEx(SampleApp_TaskID, SAMPLEAPP_LED2_FLASH_EVT); // 添加调试输出 HalUARTWrite(0, (uint8*)"红外对射终端设备停止LED2闪烁\r\n", 31); } else { // 协调器接收到停止闪烁命令时,转发给所有设备 uint8 cmd[2]; cmd[0] = 0x11; // 自定义的红外闪烁命令标识 cmd[1] = 0x00; // 停止闪烁 // 添加调试输出 HalUARTWrite(0, (uint8*)"协调器转发红外对射停止闪烁命令到网络\r\n", 38); AF_DataRequest(&SampleApp_Periodic_DstAddr, &SampleApp_epDesc, SAMPLEAPP_PERIODIC_CLUSTERID, 2, cmd, &SampleApp_TransID, AF_DISCV_ROUTE, AF_DEFAULT_RADIUS); } } else { // 添加调试输出 HalUARTWrite(0, (uint8*)"不是红外对射传感器模块,忽略命令\r\n", 34); } } // 尝试直接匹配红外对射传感器停止闪烁命令 else if(strcmp(msgPtr, "42213238YFC+Num2Led+relie") == 0) { // 添加调试输出 HalUARTWrite(0, (uint8*)"直接匹配到红外对射停止闪烁命令\r\n", 33); // 只有红外对射传感器模块响应停止闪烁命令 if (g_SensorType == SENSOR_TYPE_IR) { if (zgDeviceLogicalType != ZG_DEVICETYPE_COORDINATOR) { // 只有终端设备执行停止闪烁,协调器不处理 // 停止LED2闪烁 g_LED2FlashStatus = 0; // 关闭LED2 HalLedSet(HAL_LED_2, HAL_LED_MODE_OFF); // 明确停止闪烁定时器 osal_stop_timerEx(SampleApp_TaskID, SAMPLEAPP_LED2_FLASH_EVT); // 添加调试输出 HalUARTWrite(0, (uint8*)"红外对射终端设备直接停止LED2闪烁\r\n", 35); } else { // 协调器接收到停止闪烁命令时,转发给所有设备 uint8 cmd[2]; cmd[0] = 0x11; // 自定义的红外闪烁命令标识 cmd[1] = 0x00; // 停止闪烁 // 添加调试输出 HalUARTWrite(0, (uint8*)"协调器直接转发红外对射停止闪烁命令到网络\r\n", 42); AF_DataRequest(&SampleApp_Periodic_DstAddr, &SampleApp_epDesc, SAMPLEAPP_PERIODIC_CLUSTERID, 2, cmd, &SampleApp_TransID, AF_DISCV_ROUTE, AF_DEFAULT_RADIUS); } } } // 尝试另一种方式匹配温湿度传感器的relie命令(恢复原有逻辑) else if(strcmp(msgPtr, "42213238YFC+Num1Led+relie") == 0) { // 添加调试输出 HalUARTWrite(0, (uint8*)"直接匹配到温湿度传感器relie命令\r\n", 33); // 只有温湿度传感器模块响应relie命令 if (g_SensorType == SENSOR_TYPE_TEMP_HUMIDITY) { if (zgDeviceLogicalType != ZG_DEVICETYPE_COORDINATOR) { // 只有终端设备执行停止闪烁,协调器不处理 // 停止LED2闪烁 g_LED2FlashStatus = 0; // 关闭LED2 HalLedSet(HAL_LED_2, HAL_LED_MODE_OFF); // 明确停止闪烁定时器 osal_stop_timerEx(SampleApp_TaskID, SAMPLEAPP_LED2_FLASH_EVT); // 添加调试输出 HalUARTWrite(0, (uint8*)"温湿度传感器终端设备直接停止LED2闪烁\r\n", 39); } else { // 协调器接收到relie命令时,转发给所有设备 uint8 cmd[2]; cmd[0] = 0x10; // 自定义的flash命令标识 cmd[1] = 0x00; // 停止闪烁 // 添加调试输出 HalUARTWrite(0, (uint8*)"协调器直接转发温湿度传感器停止闪烁命令到网络\r\n", 46); AF_DataRequest(&SampleApp_Periodic_DstAddr, &SampleApp_epDesc, SAMPLEAPP_PERIODIC_CLUSTERID, 2, cmd, &SampleApp_TransID, AF_DISCV_ROUTE, AF_DEFAULT_RADIUS); } } } // 添加对shuo命令的处理 - 红外对射传感器LED闪烁命令 else if(strncmp(msgPtr, CMD_SHUO, strlen(CMD_SHUO)) == 0) { // 添加调试输出 HalUARTWrite(0, (uint8*)"收到shuo命令\r\n", 14); // 只有红外对射传感器模块响应shuo命令 if (g_SensorType == SENSOR_TYPE_IR) { // 添加调试输出 HalUARTWrite(0, (uint8*)"当前是红外对射传感器模块\r\n", 27); if (zgDeviceLogicalType != ZG_DEVICETYPE_COORDINATOR) { // 只有终端设备执行闪烁,协调器不闪烁 // 启动LED2闪烁 g_LED2FlashStatus = 1; // 触发闪烁事件,立即开始 osal_set_event(SampleApp_TaskID, SAMPLEAPP_LED2_FLASH_EVT); // 添加调试输出 HalUARTWrite(0, (uint8*)"红外对射终端设备开始LED2闪烁\r\n", 30); } else { // 协调器接收到shuo命令时,转发给所有设备 uint8 cmd[2]; cmd[0] = 0x11; // 自定义的红外闪烁命令标识,与温湿度传感器区分 cmd[1] = 0x01; // 开始闪烁 // 添加调试输出 HalUARTWrite(0, (uint8*)"协调器转发shuo命令到网络\r\n", 27); AF_DataRequest(&SampleApp_Periodic_DstAddr, &SampleApp_epDesc, SAMPLEAPP_PERIODIC_CLUSTERID, 2, cmd, &SampleApp_TransID, AF_DISCV_ROUTE, AF_DEFAULT_RADIUS); } } else { // 添加调试输出 HalUARTWrite(0, (uint8*)"不是红外对射传感器模块,忽略命令\r\n", 34); } } } // Initialize IR sensor interrupt function void InitIRSensorInterrupt(void) { // Set P1_2 as input pin P1DIR &= ~BV(2); // Configure P1_2 as input P1SEL &= ~BV(2); // Set as general I/O, not peripheral function // Configure P1_2 as pull-up input P1INP &= ~BV(2); // Set as tri-state input P2INP &= ~BV(5); // Clear P1 port pull-down setting, configure as pull-up // Read current status g_IRSensorStatus = (P1 & BV(2)) ? 0 : 1; // Set P1_2 as falling edge triggered PICTL |= BV(1); // P1 port uses falling edge trigger (PICTL.P1ICON = 1) // Enable P1_2 interrupt P1IEN |= BV(2); // Enable P1_2 interrupt function // Clear possible interrupt flags P1IFG &= ~BV(2); // Enable P1 port interrupt IEN2 |= BV(4); // Enable P1 port interrupt (IEN2.P1IE = 1) } // Process IR sensor interrupt function void ProcessIRSensorInterrupt(void) { // 简单的重入保护:如果已经在处理中,则退出 if(g_IRProcessingInProgress) { return; } g_IRProcessingInProgress = 1; // 设置处理中标志 // Read current status uint8 currentStatus = (P1 & BV(2)) ? 0 : 1; // For end devices, flash LED2 10 times and send interrupt message to coordinator if (zgDeviceLogicalType != ZG_DEVICETYPE_COORDINATOR) { // Flash LED2 10 times on end device only HalUARTWrite(0, (uint8*)"42213238YFC+红外对射传感器+interrupt\r\n", 36); HalLedBlink(HAL_LED_2, 10, 50, 200); uint8 buf[3]; buf[0] = 0x03; // Indicates this is an interrupt event message buf[1] = 0x01; // Interrupt occurred buf[2] = currentStatus; // Current sensor status AF_DataRequest(&SampleApp_Periodic_DstAddr, &SampleApp_epDesc, SAMPLEAPP_PERIODIC_CLUSTERID, 3, (uint8*)buf, &SampleApp_TransID, AF_DISCV_ROUTE, AF_DEFAULT_RADIUS); } // Status changed if (currentStatus != g_IRSensorStatus) { g_IRSensorStatus = currentStatus; // Send status to coordinator if (zgDeviceLogicalType != ZG_DEVICETYPE_COORDINATOR) { uint8 buf[2]; buf[0] = 0x02; // Indicates this is IR sensor data buf[1] = g_IRSensorStatus; AF_DataRequest(&SampleApp_Periodic_DstAddr, &SampleApp_epDesc, SAMPLEAPP_PERIODIC_CLUSTERID, 2, (uint8*)buf, &SampleApp_TransID, AF_DISCV_ROUTE, AF_DEFAULT_RADIUS); } } // Re-enable interrupt after processing // Clear interrupt flag P1IFG &= ~BV(2); // Re-enable interrupt P1IEN |= BV(2); g_IRProcessingInProgress = 0; // 清除处理中标志 } // LED2闪烁处理函数 void ProcessLED2Flash(void) { // 添加调试输出 HalUARTWrite(0, (uint8*)"执行LED2闪烁处理函数\r\n", 22); // 判断是温湿度传感器还是红外对射传感器 if (zgDeviceLogicalType != ZG_DEVICETYPE_COORDINATOR) { // 温湿度传感器模块执行闪烁 if (g_SensorType == SENSOR_TYPE_TEMP_HUMIDITY && g_LED2FlashStatus == 1) { // 添加调试输出 HalUARTWrite(0, (uint8*)"温湿度传感器符合条件,切换LED2状态\r\n", 35); // 切换LED2状态 (开/关) if ((HalLedGetState() & HAL_LED_2) == 0) { HalLedSet(HAL_LED_2, HAL_LED_MODE_ON); HalUARTWrite(0, (uint8*)"温湿度传感器LED2打开\r\n", 22); } else { HalLedSet(HAL_LED_2, HAL_LED_MODE_OFF); HalUARTWrite(0, (uint8*)"温湿度传感器LED2关闭\r\n", 22); } // 继续闪烁,500ms后再次触发 osal_start_timerEx(SampleApp_TaskID, SAMPLEAPP_LED2_FLASH_EVT, 500); } // 红外对射传感器模块执行闪烁 else if (g_SensorType == SENSOR_TYPE_IR && g_LED2FlashStatus == 1) { // 添加调试输出 HalUARTWrite(0, (uint8*)"红外对射传感器符合条件,切换LED2状态\r\n", 37); // 切换LED2状态 (开/关) if ((HalLedGetState() & HAL_LED_2) == 0) { HalLedSet(HAL_LED_2, HAL_LED_MODE_ON); HalUARTWrite(0, (uint8*)"红外对射传感器LED2打开\r\n", 24); } else { HalLedSet(HAL_LED_2, HAL_LED_MODE_OFF); HalUARTWrite(0, (uint8*)"红外对射传感器LED2关闭\r\n", 24); } // 继续闪烁,300ms后再次触发(红外传感器闪烁频率比温湿度传感器快一些) osal_start_timerEx(SampleApp_TaskID, SAMPLEAPP_LED2_FLASH_EVT, 300); } else { // LED2闪烁状态为0或传感器类型不匹配,不执行闪烁 if (g_LED2FlashStatus == 0) { HalUARTWrite(0, (uint8*)"闪烁状态为0,不执行LED2闪烁\r\n", 29); // 确保LED2处于关闭状态 HalLedSet(HAL_LED_2, HAL_LED_MODE_OFF); } else { // 传感器类型不匹配 HalUARTWrite(0, (uint8*)"传感器类型不匹配,不执行LED2闪烁\r\n", 33); } } } else { // 协调器不执行闪烁 HalUARTWrite(0, (uint8*)"协调器不执行LED2闪烁\r\n", 22); } } // Modify P1 interrupt handler related code, add P1 interrupt service routine HAL_ISR_FUNCTION(halP1Isr, P1INT_VECTOR) { if (P1IFG & BV(2)) { // Clear interrupt flag P1IFG &= ~BV(2); // Notify application to process interrupt via OSAL event osal_set_event(SampleApp_TaskID, SAMPLEAPP_SEND_SENSOR_INT_EVT); } // Clear P1 port interrupt flag P1IF = 0; } // Modify SetBuzzerStatus function to use another pin (P1_0) as buzzer output void SetBuzzerStatus(uint8 status) { if(status == 0x01) { P1_0 = 1; // Use P1_0 as buzzer control pin (active high) } else { P1_0 = 0; // Turn off buzzer } } void PrintDeviceInfo(void) { char buf[80]; // 打印设备类型信息 if(zgDeviceLogicalType == ZG_DEVICETYPE_COORDINATOR) { sprintf(buf, "设备类型: 协调器 (ZG_DEVICETYPE_COORDINATOR)\r\n"); } else if(zgDeviceLogicalType == ZG_DEVICETYPE_ROUTER) { sprintf(buf, "设备类型: 路由器 (ZG_DEVICETYPE_ROUTER)\r\n"); } else if(zgDeviceLogicalType == ZG_DEVICETYPE_ENDDEVICE) { sprintf(buf, "设备类型: 终端设备 (ZG_DEVICETYPE_ENDDEVICE)\r\n"); } else { sprintf(buf, "设备类型: 未知 (%d)\r\n", zgDeviceLogicalType); } HalUARTWrite(0, (uint8*)buf, strlen(buf)); // 打印传感器类型信息 if(g_SensorType == SENSOR_TYPE_TEMP_HUMIDITY) { sprintf(buf, "传感器类型: 温湿度传感器 (SENSOR_TYPE_TEMP_HUMIDITY)\r\n"); } else if(g_SensorType == SENSOR_TYPE_IR) { sprintf(buf, "传感器类型: 红外传感器 (SENSOR_TYPE_IR)\r\n"); } else if(g_SensorType == SENSOR_TYPE_COMBINED) { sprintf(buf, "传感器类型: 组合传感器 (SENSOR_TYPE_COMBINED)\r\n"); } else { sprintf(buf, "传感器类型: 未知 (%d)\r\n", g_SensorType); } HalUARTWrite(0, (uint8*)buf, strlen(buf)); // 打印编译时定义的宏 #ifdef TEMP_HUMIDITY_SENSOR sprintf(buf, "宏定义: TEMP_HUMIDITY_SENSOR 已定义\r\n"); #else sprintf(buf, "宏定义: TEMP_HUMIDITY_SENSOR 未定义\r\n"); #endif HalUARTWrite(0, (uint8*)buf, strlen(buf)); #ifdef COMBINED_SENSOR sprintf(buf, "宏定义: COMBINED_SENSOR 已定义\r\n"); #else sprintf(buf, "宏定义: COMBINED_SENSOR 未定义\r\n"); #endif HalUARTWrite(0, (uint8*)buf, strlen(buf)); } // 辅助函数,将字符串以十六进制格式打印出来,帮助调试 void PrintHexBytes(const char* title, const char* data, uint8 len) { char buf[200]; uint8 offset = 0; uint8 i; // 打印标题 offset = sprintf(buf, "%s: ", title); // 打印十六进制值 for (i = 0; i < len && offset < 190; i++) { offset += sprintf(buf + offset, "%02X ", (uint8)data[i]); } sprintf(buf + offset, "\r\n"); HalUARTWrite(0, (uint8*)buf, strlen(buf)); } /********************************************************************* *********************************************************************/ 根据要求和代码,实现相关功能,给出修改后的完整代码
06-28
忻州师范学院计算机科学与技术系 实 验 报 告 学号: 姓名: 班级: 1302班 "课程名称 "无线网络技术 "实验课时 " 2 " "实验项目 "Zigbee实验 "实验时间 "2015.12.14 " "指导老师 " "实验成绩 " " "实验目的( "了解并认识Zigbee; " "本次上机实 "掌握Zigbee的配置方法及实现; " "验所涉及并 "利用Zigbee完成无线点灯实验。 " "要求掌握的 " " "知识点) " " "实验环境( "硬件部分: " "本次上机实 "PC机;Zigbee模块; " "验所使用的 "软件部分: " "平台和相关 "keil u Vision4开发环境、J-Link驱动程序。 " "软件) " " "实验内容( "一.配置路由: " "算法、程序 "1. 取出J-link仿真器,将转接口插到J-link仿真器的JTAG端,通过转接 " "、步骤和方 "线将J-link与转接板连接,通过10pin转接线将转接板与节点连接,通过J" "法) "-link的标配USB线,将J-link与电脑相连。 " " " " " "将转接口插到J-link仿真器的JTAG端 Zigbee模块 " " "2 . 将转接板与节点相连,将路由器代码下载到Zigbee模块中。 " " "配置协调: " " "将转接板与节点相连,将协调器代码下载到Zigbee模块中。 " " "先给协调器上电,再上电路由器。 " " "在节点上按SW1按键可让另一节点的指示灯亮。 " " "五.再按一次SW1按键,灯灭。 " "调试过程及 " " "实验结果( " " "详细记录程 " " "序在调试过 " " "程中出现的 " " "问题及解决 " " "方法,记录 " " "程序执行的 " " "结果) " " "总结(对上 "通过本次实验,了解并认识Zigbee;掌握Zigbee的配置方法及实现;利用" "机实验结果 "Zigbee完成无线点灯实验。每次实验都需要团队的合作,在合作中进步。" "进行分析, " " "上机心得体 " " "会及改进意 " " "见) " " "附录 "(附源程序清单可另附页) " ----------------------- zigbee实验报告全文共2页,当前为第1页。 zigbee实验报告全文共2页,当前为第2页。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值