//继承自AbstractMap<K,V>,实现了Map接口,Cloneable,Seralizable接口。
public class HashMap<K,V> extends AbstractMap<K,V>
implements Map<K,V>, Cloneable, Serializable
//初始化默认容量,16,全部使用位运算,故每次扩容一定是两倍
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
//初始化最大容量,自动扩容必须在这个范围内
static final int MAXIMUM_CAPACITY = 1 << 30;
//扩容因子,每次存放的桶超过当前容量和扩容因子的乘积,则扩容第一次扩容是大于16*0.75
static final float DEFAULT_LOAD_FACTOR = 0.75f;
//桶内节点的个数超过8时会将其转化为红黑树
static final int TREEIFY_THRESHOLD = 8;
//桶内节点的个数小于6时会将其转化为普通链表
static final int UNTREEIFY_THRESHOLD = 6;
//转换树型的最小容量,只有超过此值才允许表中桶转化成红黑树
static final int MIN_TREEIFY_CAPACITY = 64;
//静态内部类,将Node数组作为其数据结构,并实现了map内的Entry接口
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Node<K,V> next;
//每个节点的构造函数
Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
public final K getKey() { return key; }
public final V getValue() { return value; }
public final String toString() { return key + "=" + value; }
//返回当前Node的hashCode,(^异或运算)如果返回1,则表示key==null或者value==null
public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
}
//修改当前节点的value值
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
//判断传入的对象的key和Value是否和当前对象相等
public final boolean equals(Object o) {
if (o == this)
return true;
if (o instanceof Map.Entry) {
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
if (Objects.equals(key, e.getKey()) &&
Objects.equals(value, e.getValue()))
return true;
}
return false;
}
}
//计算key的hash值,将高16位参与运算,避免了碰撞
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
至于如何避免的请参考:https://blog.youkuaiyun.com/fan2012huan/article/details/51097331
//不理解
static Class<?> comparableClassFor(Object x) {
if (x instanceof Comparable) {
Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
if ((c = x.getClass()) == String.class) // bypass checks
return c;
if ((ts = c.getGenericInterfaces()) != null) {
for (int i = 0; i < ts.length; ++i) {
if (((t = ts[i]) instanceof ParameterizedType) &&
((p = (ParameterizedType)t).getRawType() ==
Comparable.class) &&
(as = p.getActualTypeArguments()) != null &&
as.length == 1 && as[0] == c) // type arg is c
return c;
}
}
}
return null;
}
//不理解
static int compareComparables(Class<?> kc, Object k, Object x) {
return (x == null || x.getClass() != kc ? 0 :
((Comparable)k).compareTo(x));
}
//扩容函数,获得当前n的位数,如果0<n<=30,则将容量扩大一倍
static final int tableSizeFor(int cap) {
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
//存放KV的数据结构,
transient Node<K,V>[] table;
//用于遍历keys和values的数据结构
transient Set<Map.Entry<K,V>> entrySet;
//map中存放KV的个数
transient int size;
//记录被修改的次数,fail-fast
transient int modCount;
//记录当前桶使用的个数
int threshold;
//装载因子,如果指定则使用指定的,否则使用0.75
final float loadFactor;
//hashMap的初始化函数
public HashMap(int initialCapacity, float loadFactor);
public HashMap(int initialCapacity);
public HashMap();
public HashMap(Map<? extends K, ? extends V> m);
//获得map的容量
public int size();
//判断当前Map是否为空
public boolean isEmpty();
//获得指定key的value值,通过getNode查找是否当前k是否存在,若不存在该节点则其值为空,若存在则返回其节点的value
public V get(Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
//如果当前桶数组不为空,且hash出有节点
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
//如果第一个节点就是查找的节点,则直接返回
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
//如果还有后续节点
if ((e = first.next) != null) {
//如果当前桶是一颗红黑树的节点
if (first instanceof TreeNode)
//以树的形式查找指定节点
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
//否则采用遍历链表的方式查找该节点是否存在
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
//查找指定key是否存在
public boolean containsKey(Object key) {
return getNode(hash(key), key) != null;
}
//向集合中插入KV,若存在相同key,则覆盖其value并返回修改之前的value,如果没有则返回null
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
//put方法的底层实现,onlyIfAbsent控制是否改变已存在的value,false则改变已存在的value,ecict不理解
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
//如果表为空,则初始化
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
//如果当前桶为空,则直接放入节点
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
//查找是否已存在相同key,若存在,则将其存放
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
//如果p是红黑树的节点,则使用红黑树的put方式
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
//以链表的方式遍历查找存放位置
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
//将其放在链表的尾部
p.next = newNode(hash, key, value, null);
//如果链表长度达到了8,则转换为红黑树
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
//
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
//如果已存在key,则依据onlyIfAbsent 判断是否能够更新value值
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
//增加修改次数
++modCount;
//桶的扩容判断
if (++size > threshold)
resize();
//未使用
afterNodeInsertion(evict);
return null;
}
//桶的扩容方法
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
//如果当前桶的使用数量大于最大容量,则不可扩容
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
//如果扩容后在大于老的实际容量和默认容量,并且小于最大容量,则允许扩容
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
//当前map未存放数据,则
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}