题目描述:
给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明:每次只能向下或者向右移动一步。
示例:
输入:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
输出: 7
使用动态规划,一个dp数组,dp[]i[j]表示对是到坐标i,j最短的距离,将第一行和第一列初始化,之后每次取来自上面还是左边的最小值。
class Solution {
public int minPathSum(int[][] grid) {
if(grid == null || grid.length == 0 || grid[0].length == 0){
return 0;
}
int row = grid.length;
int col = grid[0].length;
int dp[][] = new int[row][col];
dp[0][0] = grid[0][0];
for (int i = 1; i < row; i++) {
dp[i][0] = dp[i-1][0] + grid[i][0];
}
for (int i = 1; i < col; i++) {
dp[0][i] = dp[0][i-1] + grid[0][i];
}
// 从第二行开始
for (int i = 1; i < row; i++) {
// 从
for (int j = 1; j < col; j++) {
int min = Math.min(dp[i-1][j], dp[i][j-1]);
dp[i][j] = min + grid[i][j];
}
}
return dp[row - 1][col - 1];
}
}