https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
DKL(P|Q) 用于度量同一概率空间两个概率分布 P , Q 之间的距离,在实际应用中 P 往往代表的是数据真实的分布,而 Q 一般是对 P 的逼近.
若
μ
是
X
上的任意度量,若Radon-Nikodym 导数存在,即
p=dPdμ
,
q=dQdμ
,
若
P,Q
是
X
上的概率测度,
若
P,Q
是连续随机变量的概率分布,
例如正态分布:
P∼N(0,1)
,
Q∼N(1,1)
DKL(P|Q) 的性质:
1.非对称
DKL(P|Q)≠DKL(Q|P)
2.非负
DKL(P|Q)≥0
,当且仅当
P=Q
时等号成立
pf:假设
P,Q
是连续随机变量的概率分布,