这里针对model.save(filepath)所保存的模型的加载
官网中文文档:
如果要加载的模型包含自定义层或其他自定义类或函数,则可以通过 custom_objects
参数将它们传递给加载机制:
from keras.models import load_model
# 假设你的模型包含一个 AttentionLayer 类的实例
model = load_model('my_model.h5', custom_objects={'AttentionLayer': AttentionLayer})
这里需要注意如果损失函数是自定义的,也要加入custom_objects。
或者,你可以使用 自定义对象作用域:
from keras.utils import CustomObjectScope
with CustomObjectScope({'AttentionLayer': AttentionLayer}):
model = load_model('my_model.h5')
如:一段代码如下:
x = layers.Reshape((-1, 128))(x)
capsule = Capsule(10, 16, 3, True)(x)
output = layers.Lambda(lambda z: K.sqrt(K.sum(K.square(z), 2)))(capsule)
model = Model(inputs=input_image, outputs=output)
# Margin loss is used
model.compile(loss=margin_loss, optimizer='adam', metrics=['accuracy'])
Capsule为一个自定义的层,margin_loss为一个自定义的损失函数,Capsule.h5为所保存的模型,则加载模型时应该:
model = load_model('Capsule.h5',custom_objects={'Capsule': Capsule,'margin_loss':margin_loss})
或者
with CustomObjectScope({'Capsule': Capsule,'margin_loss':margin_loss}):
model = load_model('Capsule.h5')
还有一点需要注意就是保存模型的时候所用的python版本和加载模型时所用的python版本要保持一致,否则可能会报错误:
SystemError: unknown opcode
另外还有一点就是自定义的层的__init__的参数应该要默认有初始化,否则可能会报错误:
TypeError: __init__() missing 2 required positional arguments: 'num_capsule' and 'dim_capsule'
例子来自
https://github.com/keras-team/keras/blob/master/examples/cifar10_cnn_capsule.py
我在这个例子的后面加了一句:
model.save('Capsule.h5')
保存了模型为Capsule.h5
当使用model = load_model('Capsule.h5',custom_objects={'Capsule': Capsule,'margin_loss':margin_loss})加载模型时报错:TypeError: __init__() missing 2 required positional arguments: 'num_capsule' and 'dim_capsule'
在https://github.com/keras-team/keras/blob/master/examples/cifar10_cnn_capsule.py中关于Capsule层定义如下:
class Capsule(layers.Layer):
def __init__(self,
num_capsule,
dim_capsule,
routings=3,
share_weights=True,
activation='squash',
**kwargs):
super(Capsule, self).__init__(**kwargs)
self.num_capsule = num_capsule
self.dim_capsule = dim_capsule
self.routings = routings
self.share_weights = share_weights
if activation == 'squash':
self.activation = squash
else:
self.activation = activations.get(activation)
可以看到num_capsule和dim_capsule并没有默认值,所有才会报错
我将其修改为:
class Capsule(layers.Layer):
# capsule = Capsule(10, 16, 3, True)(x)
# x--->(m, 100, 128)
def __init__(self,
num_capsule = 10,
dim_capsule = 16,
routings=3,
share_weights=True,
activation='squash',
**kwargs):
super(Capsule, self).__init__(**kwargs)
self.num_capsule = num_capsule # 10
self.dim_capsule = dim_capsule # 16
self.routings = routings
self.share_weights = share_weights
if activation == 'squash':
self.activation = squash
else:
self.activation = activations.get(activation)
完整测试代码(测试代码由https://github.com/keras-team/keras/blob/master/examples/cifar10_cnn_capsule.py改编,运行环境python3.7.3+tensorflow1.13.1+keras2.2.4)
代码如下:
from __future__ import print_function
from keras.models import load_model
from keras import activations
from keras import backend as K
from keras import layers
from keras import utils
from keras.datasets import cifar10
from keras.models import Model
from keras.preprocessing.image import ImageDataGenerator
from keras.utils import CustomObjectScope
def squash(x, axis=-1):
s_squared_norm = K.sum(K.square(x), axis, keepdims=True) + K.epsilon()
scale = K.sqrt(s_squared_norm) / (0.5 + s_squared_norm)
return scale * x
def margin_loss(y_true, y_pred):
lamb, margin = 0.5, 0.1
return K.sum(y_true * K.square(K.relu(1 - margin - y_pred)) + lamb * (
1 - y_true) * K.square(K.relu(y_pred - margin)), axis=-1)
class Capsule(layers.Layer):
def __init__(self,
num_capsule = 10,
dim_capsule = 16,
routings=3,
share_weights=True,
activation='squash',
**kwargs):
super(Capsule, self).__init__(**kwargs)
self.num_capsule = num_capsule
self.dim_capsule = dim_capsule
self.routings = routings
self.share_weights = share_weights
if activation == 'squash':
self.activation = squash
else:
self.activation = activations.get(activation)
def build(self, input_shape):
input_dim_capsule = input_shape[-1]
if self.share_weights:
self.kernel = self.add_weight(
name='capsule_kernel',
shape=(1, input_dim_capsule,
self.num_capsule * self.dim_capsule),
initializer='glorot_uniform',
trainable=True)
else:
input_num_capsule = input_shape[-2]
self.kernel = self.add_weight(
name='capsule_kernel',
shape=(input_num_capsule, input_dim_capsule,
self.num_capsule * self.dim_capsule),
initializer='glorot_uniform',
trainable=True)
def call(self, inputs, **kwargs):
if self.share_weights:
hat_inputs = K.conv1d(inputs, self.kernel)
else:
hat_inputs = K.local_conv1d(inputs, self.kernel, [1], [1])
batch_size = K.shape(inputs)[0]
input_num_capsule = K.shape(inputs)[1]
hat_inputs = K.reshape(hat_inputs,
(batch_size, input_num_capsule,
self.num_capsule, self.dim_capsule))
hat_inputs = K.permute_dimensions(hat_inputs, (0, 2, 1, 3))
b = K.zeros_like(hat_inputs[:, :, :, 0])
for i in range(self.routings):
c = K.softmax(b, 1)
o = self.activation(K.batch_dot(c, hat_inputs, [2, 2]))
if i < self.routings - 1:
b = K.batch_dot(o, hat_inputs, [2, 3])
if K.backend() == 'theano':
o = K.sum(o, axis=1)
return o
def compute_output_shape(self, input_shape):
return None, self.num_capsule, self.dim_capsule
num_classes = 10
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
y_train = utils.to_categorical(y_train, num_classes)
y_test = utils.to_categorical(y_test, num_classes)
# print(x_train.shape) # (50000, 32, 32, 3)
# print(y_train.shape) # 50000, 10)
# print(x_test.shape) # (10000, 32, 32, 3)
# print(y_test.shape) # (10000, 10)
# model = load_model('Capsule.h5',custom_objects={'Capsule': Capsule,'margin_loss':margin_loss})
with CustomObjectScope({'Capsule': Capsule,'margin_loss':margin_loss}):
model = load_model('Capsule.h5')
model.evaluate(x_test,y_test)
输出:
[0.15026126153469085, 0.8229]
参考:https://blog.youkuaiyun.com/Sarah_LZ/article/details/86526968
模型位置:
链接:https://pan.baidu.com/s/1nAX4PnOwJea5kodFUU6Grw
提取码:wuig