深度学习编程练习-用python实现的识别猫神经网络

 python实现识别猫神经网络

用pycharm进行编程实现的,具体细节可参考:

https://blog.youkuaiyun.com/qq_34290470/article/details/99849514

百度云pycharm项目源码:https://pan.baidu.com/s/12q_Er1vJpeo-O8h_KQYgCQ

完整python代码:

import numpy as np
import matplotlib.pyplot as plt
import h5py


def load_dataset():
    train_dataset = h5py.File('train_catvnoncat.h5', "r")
    train_set_x_orig = np.array(train_dataset["train_set_x"][:])  # your train set features
    train_set_y_orig = np.array(train_dataset["train_set_y"][:])  # your train set labels

    test_dataset = h5py.File('test_catvnoncat.h5', "r")
    test_set_x_orig = np.array(test_dataset["test_set_x"][:])  # your test set features
    test_set_y_orig = np.array(test_dataset["test_set_y"][:])  # your test set labels

    classes = np.array(test_dataset["list_classes"][:])  # the list of classes

    train_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0]))
    test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0]))

    return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes

index=25
train_set_x_orig , train_set_y , test_set_x_orig , test_set_y , classes = load_dataset() # 加载数据集
plt.imshow(train_set_x_orig[index]) # 查看训练集中的图片
plt.show()

# 打印出当前的训练标签值
# train_set_y是二维数组,使用np.squeeze的目的是压缩维度,即去掉shape中的1
# classe[0]='non-cat',clas
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SUNNY小飞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值