目录
什么是链式MapReduce?
一些复杂的任务难以用一次MapReduce处理完成,需要多次MapReduce才能完成任务。Hadoop2.0开始MapReduce作业支持链式处理,类似于工厂的的生产线,每一个阶段都有特定的任务要处理,比如提供原配件——>组装——打印出厂日期,等等。通过这样进一步的分工,从而提高了生成效率。
Hadoop中的链式MapReduce也是如此,这些Mapper可以像水流一样,一级一级向后处理,有点类似于Linux的管道。前一个Mapper的输出结果直接可以作为下一个Mapper的输入,形成一个流水线。
链式MapReduce的执行规则
整个Job中只能有一个Reducer,在Reducer前面可以有一个或者多个Mapper,在Reducer的后面可以有0个或者多个Mapper。
Hadoop2.0支持的链式处理MapReduce作业
(1)顺序链接MapReduce作业
类似于Unix中的管道:mapreduce-1 | mapreduce-2 | mapreduce-3 ......,每一个阶段创建一个job,并将当前输入路径设为前一个的输出。在最后阶段删除链上生成的中间数据。
(2)具有复杂依赖的MapReduce链接
若mapreduce-1处理一个数据集, mapreduce-2 处理另一个数据集,而mapreduce-3对前两个做内部连结。这种情况通过Job和JobControl类管理非线性作业间的依赖。如x.addDependingJob(y)意味着x在y完成前不会启动。
(3)预处理和后处理的链接
一般将预处理和后处理写为Mapper任务。可以自己进行链接或使用ChainMapper和ChainReducer类,生成得作业表达式类似于:MAP+ | REDUCE | MAP*
如以下作业: Map1 | Map2 | Reduce | Map3 | Map4,把Map2和Reduce视为MapReduce作业核心。Map1作为前处理,Map3, Map4作为后处理。
ChainMapper使用模式:(预处理作业)
ChainReducer使用模式:(设置Reducer并添加后处理Mapper)
任务描述
现有商品浏览情况数据goods_0,要求设计程序实现指定功能。功能为在第一个Mapper里面过滤掉点击量大于600的商品,在第二个Mapper中过滤掉点击量在100~600之间的商品,Reducer里面进行分类汇总并输出,在Reducer后的Mapper里过滤掉商品名长度大于或等于3的商品。
商品名称 点击量
袜子 189
毛衣 600
裤子 780
鞋子 30
呢子外套 90
牛仔外套 130
羽绒服 7
帽子 21
帽子 6
羽绒服 12
流程分析
mapreduce执行的大体流程如下图所示:
由上图可知,ChainMapReduce的执行流程为:
①首先将文本文件中的数据通过InputFormat实例切割成多个小数据集InputSplit,然后通过RecordReader实例将小数据集InputSplit解析为<key,value>的键值对并提交给Mapper1;
②Mapper1里的map函数将输入的value进行切割,把商品名字段作为key值,点击数量字段作为value值,筛选出value值小于等于600的<key,value>,将<key,value>输出给Mapper2,
③Mapper2里的map函数再筛选出value值小于100的<key,value>,并将<key,value>输出;
④Mapper2输出的<key,value>键值对先经过shuffle,将key值相同的所有value放到一个集合,形成<key,value-list>,然后将所有的<key,value-list>输入给Reducer;