一. 简介
归并排序(Merge Sort)是建立在归并操作上的一种有效,稳定的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。
二. 图解
三. JAVA实现
import java.util.Arrays;
public class SortTest {
public static void main(String[] args) throws Exception {
int[] arr = {1, 3, 6, 2, 8, 4, 5, 7};
sort(arr);
System.out.println(Arrays.toString(arr));
}
public static void sort(int[] arr) {
//在排序前,先建好一个长度等于原数组长度的临时数组,避免递归中频繁开辟空间
int[] temp = new int[arr.length];
sort(arr, 0, arr.length - 1, temp);
}
private static void sort(int[] arr, int left, int right, int[] temp) {
if (left < right) {
int mid = (left + right) / 2;
//左边归并排序,使得左子序列有序
sort(arr, left, mid, temp);
//右边归并排序,使得右子序列有序
sort(arr, mid + 1, right, temp);
//将两个有序子数组合并操作
merge(arr, left, mid, right, temp);
}
}
private static void merge(int[] arr, int left, int mid, int right, int[] temp) {
//左序列指针
int i = left;
//右序列指针
int j = mid + 1;
//临时数组指针
int t = 0;
while (i <= mid && j <= right) {
if (arr[i] <= arr[j]) {
temp[t++] = arr[i++];
} else {
temp[t++] = arr[j++];
}
}
//将左边剩余元素填充进temp中
while (i <= mid) {
temp[t++] = arr[i++];
}
//将右序列剩余元素填充进temp中
while (j <= right) {
temp[t++] = arr[j++];
}
t = 0;
//将temp中的元素全部拷贝到原数组中
while (left <= right) {
arr[left++] = temp[t++];
}
}
}
四. rust实现
use std::cmp::Ordering;
fn main() {
let mut a = [4, 3, 6, 2, 8, 1, 5, 7, -1];
mergesort(&mut a);
println!("{:?}", a);
fn mergesort(array: &mut [i32]) {
let mid = array.len() / 2;
if mid == 0 {
return; //base case: array.len() == 1
}
mergesort(&mut array[..mid]);
mergesort(&mut array[mid..]);
merge(array, mid);
}
fn merge(array: &mut [i32], mid: usize) {
let mut new_array = vec![]; //use vec to keep sorted value
let mut j = 0;
let mut k = mid;
for i in 0..array.len() {
if k == array.len() || j == mid {
//if left or right are all selected
break;
}
if array[j] < array[k] {
new_array.push(array[j]);
j += 1;
} else {
new_array.push(array[k]);
k += 1;
}
}
match (j.cmp(&mid), k.cmp(&array.len())) {
(Ordering::Equal, Ordering::Equal) => (),
(Ordering::Less, Ordering::Equal) => {
for i in j..mid {
new_array.push(array[i]);
}
}
(Ordering::Equal, Ordering::Less) => {
for i in k..array.len() {
new_array.push(array[i]);
}
}
_ => (),
}
for i in 0..array.len() {
array[i] = new_array[i];
}
}
}